ON GENERALIZED FERMAT DIOPHANTINE FUNCTIONAL EQUATIONS IN Cn AND PICARD TYPE THEOREMS

被引:0
|
作者
Chen, Wei [1 ]
Wang, Qiong [2 ]
Yang, Liu [3 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Sci, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Chongqing KEY Lab Intelligent Anal & Desis Complex, Chongqing 400065, Peoples R China
[3] Anhui Univ Technol, Sch Math & Phys, Maanshan 243032, Peoples R China
来源
HOUSTON JOURNAL OF MATHEMATICS | 2023年 / 49卷 / 03期
基金
中国博士后科学基金;
关键词
Entire function; meromorphic function; functional equation; Picard type theorem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concerns entire and meromorphic solutions of the generalized Fermat Diophantine functional equations hf(p) + kg(q) = 1 in C-n, where h, k are meromorphic coefficients in several complex variables and p, q >= 1 are integers with (p, q) not equal (1, 1). As applications, we determine when entire solutions of the simple-looking functional equation f(p) + g(q) = 1 in C reduce to constant and then apply the result to show two well-known Picard type theorems in a direct manner.
引用
收藏
页码:531 / 549
页数:19
相关论文
共 50 条
  • [31] Solutions to some generalized Fermat-type differential-difference equations
    Xu, Zhiyong
    Xu, Junfeng
    AIMS MATHEMATICS, 2024, 9 (12): : 34488 - 34503
  • [32] ENTIRE SOLUTIONS TO FERMAT-TYPE DIFFERENCE AND PARTIAL DIFFERENTIAL-DIFFERENCE EQUATIONS IN Cn
    Xu, Hong Yan
    Haldar, Goutam
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 2024 (26)
  • [33] PICARD-TYPE THEOREMS FOR HOLOMORPHIC MAPPINGS
    BABETS, VA
    SIBERIAN MATHEMATICAL JOURNAL, 1984, 25 (02) : 195 - 200
  • [34] Massera Type Theorems for Abstract Functional Differential Equations
    Liu, Qing
    Van Minh, Nguyen
    Nguerekata, G.
    Yuan, Rong
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2008, 51 (03): : 329 - 350
  • [35] Razumikhin type theorems for functional differential equations with impulses
    Wen, LZ
    Chen, YS
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS, 1999, 6 (03): : 389 - 400
  • [36] GENERALIZED PICARD THEOREM FOR ORDINARY DIFFERENTIAL EQUATIONS
    POMENTALE, T
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1974, 56 (04): : 482 - 486
  • [37] Diophantine equations of Pellian type
    Halter-Koch, Franz
    JOURNAL OF NUMBER THEORY, 2011, 131 (09) : 1597 - 1615
  • [38] Characterizations of entire solutions for the system of Fermat-type binomial and trinomial shift equations in Cn#
    Haldar, Goutam
    Banerjee, Abhijit
    DEMONSTRATIO MATHEMATICA, 2023, 56 (01)
  • [39] FERMAT TYPE DIFFERENTIAL AND DIFFERENCE EQUATIONS
    Liu, Kai
    Dong, Xianjing
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [40] Diophantine equations and Fermat’s last theorem for multivariate (skew-)polynomials
    Jie Pan
    Yu-ming Jia
    Fang Li
    Applied Mathematics-A Journal of Chinese Universities, 2024, 39 : 159 - 173