SinglePointRNA, an user-friendly application implementing single cell RNA-seq analysis software

被引:0
|
作者
Puente-Santamaria, Laura [1 ,2 ]
del Peso, Luis [1 ,3 ,4 ,5 ]
机构
[1] Univ Autonoma Madrid UAM, Fac Med, Dept Bioquim, Madrid, Spain
[2] Fdn Parque Cientif Madrid, Genom Unit Cantoblanco, Madrid, Spain
[3] Inst Invest Sanitaria Hosp Univ La Paz, IdiPaz, Madrid, Spain
[4] Inst Salud Carlos III, Ctr Invest Biomed Red Enfermedades Respiratorias C, Madrid, Spain
[5] UCLM, Unidad Asociada Biomed CSIC, Albacete, Spain
来源
PLOS ONE | 2024年 / 19卷 / 06期
关键词
D O I
10.1371/journal.pone.0300567
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell transcriptomics techniques, such as scRNA-seq, attempt to characterize gene expression profiles in each cell of a heterogeneous sample individually. Due to growing amounts of data generated and the increasing complexity of the computational protocols needed to process the resulting datasets, the demand for dedicated training in mathematical and programming skills may preclude the use of these powerful techniques by many teams. In order to help close that gap between wet-lab and dry-lab capabilities we have developed SinglePointRNA, a shiny-based R application that provides a graphic interface for different publicly available tools to analyze single cell RNA-seq data. The aim of SinglePointRNA is to provide an accessible and transparent tool set to researchers that allows them to perform detailed and custom analysis of their data autonomously. SinglePointRNA is structured in a context-driven framework that prioritizes providing the user with solid qualitative guidance at each step of the analysis process and interpretation of the results. Additionally, the rich user guides accompanying the software are intended to serve as a point of entry for users to learn more about computational techniques applied to single cell data analysis. The SinglePointRNA app, as well as case datasets for the different tutorials are available at www.github.com/ScienceParkMadrid/SinglePointRNA.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] User-friendly, scalable tools and workflows for single-cell RNA-seq analysis
    Pablo Moreno
    Ni Huang
    Jonathan R. Manning
    Suhaib Mohammed
    Andrey Solovyev
    Krzysztof Polanski
    Wendi Bacon
    Ruben Chazarra
    Carlos Talavera-López
    Maria A. Doyle
    Guilhem Marnier
    Björn Grüning
    Helena Rasche
    Nancy George
    Silvie Korena Fexova
    Mohamed Alibi
    Zhichao Miao
    Yasset Perez-Riverol
    Maximilian Haeussler
    Alvis Brazma
    Sarah Teichmann
    Kerstin B. Meyer
    Irene Papatheodorou
    [J]. Nature Methods, 2021, 18 : 327 - 328
  • [2] User-friendly, scalable tools and workflows for single-cell RNA-seq analysis
    Moreno, Pablo
    Huang, Ni
    Manning, Jonathan R.
    Mohammed, Suhaib
    Solovyev, Andrey
    Polanski, Krzysztof
    Bacon, Wendi
    Chazarra, Ruben
    Talavera-Lopez, Carlos
    Doyle, Maria A.
    Marnier, Guilhem
    Gruening, Bjoern
    Rasche, Helena
    George, Nancy
    Fexova, Silvie Korena
    Alibi, Mohamed
    Miao, Zhichao
    Perez-Riverol, Yasset
    Haeussler, Maximilian
    Brazma, Alvis
    Teichmann, Sarah
    Meyer, Kerstin B.
    Papatheodorou, Irene
    [J]. NATURE METHODS, 2021, 18 (04) : 327 - 328
  • [3] BingleSeq: a user-friendly R package for bulk and single-cell RNA-Seq data analysis
    Dimitrov, Daniel
    Gu, Quan
    [J]. PEERJ, 2020, 8
  • [4] ShIVA: a user-friendly and interactive interface giving biologists control over their single-cell RNA-seq data
    Rudy Aussel
    Muhammad Asif
    Sabrina Chenag
    Sébastien Jaeger
    Pierre Milpied
    Lionel Spinelli
    [J]. Scientific Reports, 13 (1)
  • [5] ShIVA: a user-friendly and interactive interface giving biologists control over their single-cell RNA-seq data
    Aussel, Rudy
    Asif, Muhammad
    Chenag, Sabrina
    Jaeger, Sebastien
    Milpied, Pierre
    Spinelli, Lionel
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01):
  • [6] TRUFA: A User-Friendly Web Server for de novo RNA-seq Analysis Using Cluster Computing
    Kornobis, Etienne
    Cabellos, Luis
    Aguilar, Fernando
    Frias-Lopez, Cristina
    Rozas, Julio
    Marco, Jesus
    Zardoya, Rafael
    [J]. EVOLUTIONARY BIOINFORMATICS, 2015, 11 : 97 - 104
  • [7] RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics
    Lohse, Marc
    Bolger, Anthony M.
    Nagel, Axel
    Fernie, Alisdair R.
    Lunn, John E.
    Stitt, Mark
    Usadel, Bjoern
    [J]. NUCLEIC ACIDS RESEARCH, 2012, 40 (W1) : W622 - W627
  • [8] Cellsnake: a user-friendly tool for single-cell RNA sequencing analysis
    Umu, Sinan U.
    Vander-Elst, Karoline Rapp
    Karlsen, Victoria T.
    Chouliara, Manto
    Baekkevold, Espen Sonderaal
    Jahnsen, FroDe lars
    Domanska, Diana
    [J]. GIGASCIENCE, 2023, 12
  • [9] RNAdetector: a free user-friendly stand-alone and cloud-based system for RNA-Seq data analysis
    Alessandro La Ferlita
    Salvatore Alaimo
    Sebastiano Di Bella
    Emanuele Martorana
    Georgios I. Laliotis
    Francesco Bertoni
    Luciano Cascione
    Philip N. Tsichlis
    Alfredo Ferro
    Roberta Bosotti
    Alfredo Pulvirenti
    [J]. BMC Bioinformatics, 22
  • [10] RNAdetector: a free user-friendly stand-alone and cloud-based system for RNA-Seq data analysis
    La Ferlita, Alessandro
    Alaimo, Salvatore
    Di Bella, Sebastiano
    Martorana, Emanuele
    Laliotis, Georgios I.
    Bertoni, Francesco
    Cascione, Luciano
    Tsichlis, Philip N.
    Ferro, Alfredo
    Bosotti, Roberta
    Pulvirenti, Alfredo
    [J]. BMC BIOINFORMATICS, 2021, 22 (01)