Cellsnake: a user-friendly tool for single-cell RNA sequencing analysis

被引:2
|
作者
Umu, Sinan U. [1 ]
Vander-Elst, Karoline Rapp [2 ]
Karlsen, Victoria T. [2 ]
Chouliara, Manto [2 ]
Baekkevold, Espen Sonderaal [2 ,3 ]
Jahnsen, FroDe lars [1 ,2 ]
Domanska, Diana [2 ,4 ]
机构
[1] Univ Oslo, Inst Clin Med, Dept Pathol, N-0372 Oslo, Norway
[2] Oslo Univ Hosp, Dept Pathol, Rikshosp, N-0372 Oslo, Norway
[3] Univ Oslo, Inst Oral Biol, N-0372 Oslo, Norway
[4] Univ Oslo, Dept Microbiol, Rikshosp, N-0372 Oslo, Norway
来源
GIGASCIENCE | 2023年 / 12卷
关键词
scRNA; RNA-seq; workflow; microbiome; single-cell; snakemake; Seurat;
D O I
10.1093/gigascience/giad091
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Single-cell RNA sequencing (scRNA-seq) provides high-resolution transcriptome data to understand the heterogeneity of cell populations at the single-cell level. The analysis of scRNA-seq data requires the utilization of numerous computational tools. However, nonexpert users usually experience installation issues, a lack of critical functionality or batch analysis modes, and the steep learning curves of existing pipelines. Results: We have developed cellsnake, a comprehensive, reproducible, and accessible single-cell data analysis workflow, to overcome these problems. Cellsnake offers advanced features for standard users and facilitates downstream analyses in both R and Python environments. It is also designed for easy integration into existing workflows, allowing for rapid analyses of multiple samples. Conclusion: As an open-source tool, cellsnake is accessible through Bioconda, PyPi, Docker, and GitHub, making it a cost-effective and user-friendly option for researchers. By using cellsnake, researchers can streamline the analysis of scRNA-seq data and gain insights into the complex biology of single cells.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] iS-CellR: a user-friendly tool for analyzing and visualizing single-cell RNA sequencing data
    Patel, Mitulkumar V.
    [J]. BIOINFORMATICS, 2018, 34 (24) : 4305 - 4306
  • [2] dittoSeq: universal user-friendly single-cell and bulk RNA sequencing visualization toolkit
    Bunis, Daniel G.
    Andrews, Jared
    Fragiadakis, Gabriela K.
    Burt, Trevor D.
    Sirota, Marina
    [J]. BIOINFORMATICS, 2020, 36 (22-23) : 5535 - 5536
  • [3] User-friendly, scalable tools and workflows for single-cell RNA-seq analysis
    Pablo Moreno
    Ni Huang
    Jonathan R. Manning
    Suhaib Mohammed
    Andrey Solovyev
    Krzysztof Polanski
    Wendi Bacon
    Ruben Chazarra
    Carlos Talavera-López
    Maria A. Doyle
    Guilhem Marnier
    Björn Grüning
    Helena Rasche
    Nancy George
    Silvie Korena Fexova
    Mohamed Alibi
    Zhichao Miao
    Yasset Perez-Riverol
    Maximilian Haeussler
    Alvis Brazma
    Sarah Teichmann
    Kerstin B. Meyer
    Irene Papatheodorou
    [J]. Nature Methods, 2021, 18 : 327 - 328
  • [4] User-friendly, scalable tools and workflows for single-cell RNA-seq analysis
    Moreno, Pablo
    Huang, Ni
    Manning, Jonathan R.
    Mohammed, Suhaib
    Solovyev, Andrey
    Polanski, Krzysztof
    Bacon, Wendi
    Chazarra, Ruben
    Talavera-Lopez, Carlos
    Doyle, Maria A.
    Marnier, Guilhem
    Gruening, Bjoern
    Rasche, Helena
    George, Nancy
    Fexova, Silvie Korena
    Alibi, Mohamed
    Miao, Zhichao
    Perez-Riverol, Yasset
    Haeussler, Maximilian
    Brazma, Alvis
    Teichmann, Sarah
    Meyer, Kerstin B.
    Papatheodorou, Irene
    [J]. NATURE METHODS, 2021, 18 (04) : 327 - 328
  • [5] A User-Friendly Platform for Single-Cell Raman Spectroscopy Analysis
    Liu, Ya-Juan
    Kyne, Michelle
    Wang, Shuang
    Wang, Sheng
    Yu, Xi-Yong
    Wang, Cheng
    [J]. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2022, 282
  • [6] BingleSeq: a user-friendly R package for bulk and single-cell RNA-Seq data analysis
    Dimitrov, Daniel
    Gu, Quan
    [J]. PEERJ, 2020, 8
  • [7] A user-friendly tool for image analysis
    Nair H.
    [J]. Pattern Recognition and Image Analysis, 2006, 16 (2) : 234 - 238
  • [8] DIscBIO: A User-Friendly Pipeline for Biomarker Discovery in Single-Cell Transcriptomics
    Ghannoum, Salim
    Leoncio Netto, Waldir
    Fantini, Damiano
    Ragan-Kelley, Benjamin
    Parizadeh, Amirabbas
    Jonasson, Emma
    Stahlberg, Anders
    Farhan, Hesso
    Kohn-Luque, Alvaro
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (03) : 1 - 19
  • [9] A USER-FRIENDLY TOOL FOR ELECTRICITY SYSTEMS ANALYSIS
    Pereira, Sergio
    Ferreira, Paula
    Vaz, A. Ismael F.
    [J]. PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ENERGY & ENVIRONMENT: BRINGING TOGETHER ENGINEERING AND ECONOMICS, 2015, : 106 - 124
  • [10] Single-Cell Virtual Cytometer allows user-friendly and versatile analysis and visualization of multimodal single cell RNAseq datasets
    Pont, Frederic
    Tosolini, Marie
    Gao, Qing
    Perrier, Marion
    Madrid-Mencia, Miguel
    Huang, Tse Shun
    Neuvial, Pierre
    Ayyoub, Maha
    Nazor, Kristopher
    Fournie, Jean-Jacques
    [J]. NAR GENOMICS AND BIOINFORMATICS, 2020, 2 (02)