Magnetic Bianchi-I cosmology in the Horndeski theory

被引:0
|
作者
Muharlyamov, Ruslan K. [1 ]
Pankratyeva, Tatiana N. [2 ]
Bashir, Shehabaldeen O. A. [1 ,3 ]
机构
[1] Kazan Fed Univ, Inst Phys, Dept Gen Relat & Gravitat, Kremlevskaya Str 18, Kazan 420008, Russia
[2] Kazan State Power Engn Univ, Dept Higher Math, Krasnoselskaya Str 51, Kazan 420066, Russia
[3] Univ Khartoum, Fac Sci, Dept Phys, Khartoum 11115, Sudan
关键词
Horndeski theory; dark energy; Bianchi-I cosmology; INFLATION; RECONSTRUCTION; ISOTROPY;
D O I
10.1142/S0217732324500858
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we study the evolution of Bianchi-I spacetimes within the framework of the Horndeski theory with G5=const./X. The spacetimes are filled a global unidirectional electromagnetic field interacting with a scalar field. We consider the minimal interaction and the non-minimal interaction by the law f2(phi)F mu nu F mu nu. The Horndeski theory allows anisotropy to grow over time, so the question arises of regulating the anisotropic level in this theory. Using the designer method, we build models in which the anisotropic level tends to a small value as the Universe expands. One of the results is a model with a anisotropic bounce.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Dilaton electromagnetic Bianchi-I cosmologies
    Salim, JM
    Sautu, SL
    Martins, R
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (06) : 1521 - 1526
  • [22] Bianchi-I cosmological model and crossing singularities
    Kamenshchik, Alexander Yu.
    Pozdeeva, Ekaterina O.
    Vernov, Sergey Yu.
    Tronconi, Alessandro
    Venturi, Giovanni
    [J]. PHYSICAL REVIEW D, 2017, 95 (08)
  • [23] Bianchi I Quantum Cosmology in the Bergmann–Wagoner Theory
    Luis O. Pimentel
    [J]. General Relativity and Gravitation, 2001, 33 : 781 - 790
  • [24] Scalar Fields for Bianchi-I Model in f(R,T) Theory of Gravity
    Kabaoglu, Yasemin
    Aktas, Can
    [J]. GRAVITATION & COSMOLOGY, 2024, 30 (02): : 222 - 228
  • [25] Bianchi-I Cosmologies with a Scalar Field and an Ultrarelativistic Gas in Einstein-Cartan Theory
    Galiakhmetov, A. M.
    [J]. GRAVITATION & COSMOLOGY, 2008, 14 (02): : 190 - 196
  • [26] DIRAC-EQUATION IN BIANCHI-I METRICS
    CHIMENTO, LP
    MOLLERACH, MS
    [J]. PHYSICS LETTERS A, 1987, 121 (01) : 7 - 10
  • [27] NEWTONIAN AND RELATIVISTIC BIANCHI-I MODELS OF THE UNIVERSE
    BARBERIS, B
    GALLETTO, D
    [J]. LECTURE NOTES IN PHYSICS, 1984, 212 : 290 - 293
  • [28] Bianchi I quantum cosmology in the Bergmann-Wagoner theory
    Pimentel, LO
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2001, 33 (05) : 781 - 790
  • [29] A Spin Coefficients Approach to Bianchi-I Space-Time in Einstein—Cartan Theory
    S. Sinha
    B. Manna
    S. Sahoo
    [J]. Gravitation and Cosmology, 2019, 25 : 283 - 288
  • [30] FLUID SOURCES FOR BIANCHI-I AND BIANCHI-III SPACE-TIMES
    BAYIN, SS
    KRISCH, JP
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (01) : 262 - 263