Microstructures and mechanical properties of additively manufactured Fe-21Mn-0.6C TWIP steel using laser powder bed fusion

被引:0
|
作者
Chen, Youyun [1 ,2 ]
Zhai, Wengang [3 ]
Liang, Juhua [2 ]
Zhao, Modi [2 ]
Han, Fusheng [2 ]
机构
[1] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
[2] Chinese Acad Sci, Key Lab Mat Phys, Inst Solid State Phys, Hefei Inst Phys Sci, Hefei 230031, Anhui, Peoples R China
[3] Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
关键词
Additive manufacturing; TWIP steel; Rapid solidification; Microstructure; Mechanical property; TENSILE DEFORMATION-BEHAVIOR; GRAIN-SIZE; EVOLUTION; STRENGTH; ORIENTATION; DUCTILITY; NETWORK;
D O I
10.1016/j.jmrt.2024.06.192
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Twinning induced plasticity (TWIP) high manganese steel exhibits high ultimate tensile strength (UTS) and ductility, but its low yield strength restricts its applications. This research presents a Fe-21Mn-0.6C TWIP steel with enhanced mechanical properties additively manufactured using laser powder bed fusion (LPBF). The average grain size of the LPBF-fabricated Fe-21Mn-0.6C was 17.1 pm in the vertical direction, which was a quarter of that of a wrought one. The tensile yield strength was 657 MPa and the UTS was 1089 MPa with an elongation of 47.9% for the vertical direction. Compared to the wrought Fe-21Mn-0.6C, the yield strength increased by 110%. The high strength of LPBF-fabricated Fe-21Mn-0.6C is primarily attributed to solution, grain boundary and dislocation strengthening. Serrations were observed in the stress-strain curves at the initial stage of deformation, showing large stress drops. In the annealed sample, serrations appeared at a later stage of deformation with little stress drops. This difference in serration phenomenon is attributed to the varying dislocation density in the two samples.
引用
收藏
页码:2226 / 2235
页数:10
相关论文
共 50 条
  • [31] Microstructure and mechanical properties of Haynes 188 alloy manufactured by laser powder bed fusion
    Liu, Yang
    Huang, Zhifeng
    Zhang, Chi
    Lu, Jiaqi
    Ouyang, Ni
    Shen, Qiang
    Huang, Aijun
    Chen, Fei
    MATERIALS CHARACTERIZATION, 2024, 211
  • [32] Microstructure and mechanical properties of rene 41 alloy manufactured by laser powder bed fusion
    Atabay, Sila Ece
    Sanchez-Mata, Oscar
    Muniz-Lerma, Jose Alberto
    Gauvin, Raynald
    Brochu, Mathieu
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 773 (773):
  • [33] Influence of laser power on mechanical properties and pitting corrosion behavior of additively manufactured 316L stainless steel by laser powder bed fusion (L-PBF)
    Zhang, Ao
    Wu, Wangping
    Wu, Meng
    Liu, Yaxuan
    Zhang, Yi
    Wang, Qinqin
    OPTICS AND LASER TECHNOLOGY, 2024, 176
  • [34] On the Fabrication of High-Performance Additively Manufactured Copper Winding Using Laser Powder Bed Fusion
    Abdelhafiz, Mohamed
    Emadi, Ali
    Elbestawi, Mohamed A. A.
    MATERIALS, 2023, 16 (13)
  • [35] RESIDUAL STRESS MEASUREMENT USING NANOINDENTATION ON PARTS ADDITIVELY MANUFACTURED BY LASER POWDER BED FUSION (LPBF)
    Nguyen, Dan T.
    Haridas, Ravi Sankar
    Mirshams, Reza A.
    Siller, Hector R.
    PROCEEDINGS OF ASME 2024 19TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, MSEC2024, VOL 1, 2024,
  • [36] Mechanical properties of Inconel 718 additively manufactured by laser powder bed fusion after industrial high-temperature heat treatment
    Gruber, Konrad
    Stopyra, Wojciech
    Kobiela, Karol
    Madejski, Bartosz
    Malicki, Maciej
    Kurzynowski, Tomasz
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 73 : 642 - 659
  • [37] Microstructure and mechanical properties of GH5188 superalloy additively manufactured via ultrasonic-assisted laser powder bed fusion
    Yan, Zhongwei
    Trofimov, Vyacheslav
    Song, Changhui
    Han, Changjun
    Yang, Yongqiang
    Yang, Chao
    Xiao, Yunmian
    Deng, Zhengtai
    Chen, Jie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 939
  • [38] Effect of intermediate annealing on microstructure and mechanical property of a Fe-19Mn-0.6C TWIP steel
    Xue, Hui
    Yuan, Hui
    Guo, Kai
    Zhang, Mengmeng
    MATERIALS RESEARCH EXPRESS, 2022, 9 (11)
  • [39] Atomization gases dependent mechanical properties in the laser powder bed fusion manufactured 304L stainless steel
    Wang, Liyi
    Tan, Zhijian
    Wang, Shengxiang
    Liu, Weiqiang
    Hao, Jiazheng
    Zhang, Xuekai
    Deng, Sihao
    Yu, Chaoju
    Zheng, Haibiao
    Zeng, Zhirong
    Lu, Huaile
    He, Lunhua
    Chen, Jie
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2023, 316
  • [40] Effect of annealing on the mechanical and corrosion properties of 316L stainless steel manufactured by laser powder bed fusion
    Ura-Binczyk, E.
    Dobkowska, A.
    Bazarnik, P.
    Ciftci, J.
    Krawczynska, A.
    Chrominski, W.
    Wejrzanowski, T.
    Molak, R.
    Sitek, R.
    Plocinski, T.
    Jaroszewicz, J.
    Mizera, J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 860