Investigating intracellular SIRT1 regulation mechanisms using molecular dynamics simulations and machine learning

被引:0
|
作者
Bui, Hoang-Long [1 ]
Prado, Justin [1 ]
Wang, Ningkun [1 ]
Grazioli, Gianmarc [1 ]
机构
[1] San Jose State Univ, Dept Chem, San Jose, CA USA
关键词
D O I
暂无
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
3084-Pos
引用
收藏
页码:551A / 551A
页数:1
相关论文
共 50 条
  • [41] Prediction of nonlocal elasticity parameters using high-throughput molecular dynamics simulations and machine learning
    Lal, Hridya P.
    Abhiram, B. R.
    Ghosh, Debraj
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2024, 103
  • [42] Elucidating Twinning Mechanisms in CdTe Homoepitaxial Film Growth from Machine Learning Force Field Molecular Dynamics Simulations
    Li, Jun
    Luo, Kun
    An, Qi
    CRYSTAL GROWTH & DESIGN, 2024, 24 (18) : 7484 - 7493
  • [43] Correction to: Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving ‘SIRT1 and PGC-1α’
    Maayan Waldman
    Keren Cohen
    Dor Yadin
    Vadim Nudelman
    Dan Gorfil
    Michal Laniado-Schwartzman
    Ran Kornwoski
    Dan Aravot
    Nader G. Abraham
    Michael Arad
    Edith Hochhauser
    Cardiovascular Diabetology, 17
  • [44] Consensus QSAR modelling of SIRT1 activators using simplex representation of molecular structure
    Chauhan, S.
    Kumar, A.
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2018, 29 (04) : 277 - 294
  • [45] Machine learning classification of trajectories from molecular dynamics simulations of chromosome segregation
    Geisel, David
    Lenz, Peter
    PLOS ONE, 2022, 17 (01):
  • [46] Self-assembly of peptides: The acceleration by molecular dynamics simulations and machine learning
    Cao, Nana
    Huang, Kang
    Xie, Jianjun
    Wang, Hui
    Shi, Xinghua
    NANO TODAY, 2024, 55
  • [47] Machine learning analysis of SH-dipeptide dynamics from atomistic molecular dynamics simulations
    Zong, Zixiao
    Butts, Carter T.
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 142A - 142A
  • [48] Investigating RNA-protein recognition mechanisms through supervised molecular dynamics (SuMD) simulations
    Pavan, Matteo
    Bassani, Davide
    Sturlese, Mattia
    Moro, Stefano
    NAR GENOMICS AND BIOINFORMATICS, 2022, 4 (04)
  • [49] Probing inhibition mechanisms of adenosine deaminase by using molecular dynamics simulations
    Tian, Xiaopian
    Liu, Ye
    Zhu, Jingxuan
    Yu, Zhengfei
    Han, Jiarui
    Wang, Yan
    Han, Weiwei
    PLOS ONE, 2018, 13 (11):
  • [50] Solvation structures and ion dynamics of CaCl2 aqueous electrolytes using metadynamics and machine learning molecular dynamics simulations
    Yu, Zhou
    Cheng, Lei
    CHEMICAL PHYSICS LETTERS, 2025, 867