共 50 条
Lithiating cathodes for Li-S batteries: Regulating Li2S electrodeposition to enhance sulfur utilization
被引:1
|作者:
Yeom, Saegi
[1
]
Jo, Hyunhee
[1
]
Lee, Haeli
[1
]
Moon, Jun Hyuk
[1
,2
]
机构:
[1] Korea Univ, Dept Chem & Biol Engn, 145 Anam Ro, Seoul 02841, South Korea
[2] Korea Univ, Sch Smart Mobil, Dept Chem & Biol Engn, 145 Anam Ro, Seoul 02841, South Korea
关键词:
Lithiating cathodes;
Chemical potential;
Sulfur utilization;
Bulk diffusion;
LITHIUM INTERCALATION;
CONVERSION;
POLYSULFIDES;
KINETICS;
HETEROSTRUCTURES;
IMMOBILIZATION;
DEPOSITION;
NB2O5;
WO3;
D O I:
10.1016/j.ensm.2024.103644
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
The passivation of the cathode substrate by Li2S 2 S during discharge is particularly pronounced in conditions such as high S content, crucial for practical Li-S batteries. Yet, actively regulating this phenomenon through cathode substrate exploration remains a challenging task. This study unveils that Li-intercalating oxides like Nb2O5, 2 O 5 , which undergo lithiation at discharge potentials, can induce passivation-free 3D Li2S 2 S growth, while oxides such as WO3 3 and MoO2, 2 , which do not undergo lithiation at discharge potentials, exhibit 2D growth. Specifically, during discharge, the electrodeposition of Li2S 2 S kinetically inhibits lithiation, prompting lithiation from Li2S 2 S instead of from the electrolyte Li salt; this process leads to the bulk diffusion of dissociated S 2- and its 3D deposition. Utilizing a CNT cathode substrate incorporating lithiating oxides, we achieve high S utilization and high cell performance under conditions of high S loading with a lean electrolyte. This includes a discharge capacity of 1620 mAh g- 1 at 0.03 C, equivalent to 97% S utilization, and substantial capacities of 11.0 mAh cm-- 2 and 6.40 mAh cm-- 2 under high sulfur loadings of 14 mg cm-- 2 and a lean electrolyte of E/S S = 5, respectively.
引用
收藏
页数:10
相关论文