Neurosymbolic Reasoning and Learning with Restricted Boltzmann Machines

被引:0
|
作者
Tran, Son N. [1 ]
Garcez, Artur d'Avila [2 ]
机构
[1] Univ Tasmania, Launceston, Tas 7248, Australia
[2] City Univ London, Northampton Sq, London EC1V 0HB, England
关键词
NEURAL-NETWORKS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge representation and reasoning in neural networks has been a long-standing endeavour which has attracted much attention recently. The principled integration of reasoning and learning in neural networks is a main objective of the area of neurosymbolic Artificial Intelligence. In this paper, a neurosymbolic system is introduced that can represent any propositional logic formula. A proof of equivalence is presented showing that energy minimization in restricted Boltzmann machines corresponds to logical reasoning. We demonstrate the application of our approach empirically on logical reasoning and learning from data and knowledge. Experimental results show that reasoning can be performed effectively for a class of logical formulae. Learning from data and knowledge is also evaluated in comparison with learning of logic programs using neural networks. The results show that our approach can improve on state-of-the-art neurosymbolic systems. The theorems and empirical results presented in this paper are expected to reignite the research on the use of neural networks as massively-parallel models for logical reasoning and promote the principled integration of reasoning and learning in deep networks.
引用
收藏
页码:6558 / 6565
页数:8
相关论文
共 50 条
  • [21] Non-parametric learning of lifted Restricted Boltzmann Machines
    Kaur, Navdeep
    Kunapuli, Gautam
    Natarajan, Sriraam
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2020, 120 : 33 - 47
  • [22] Mode-assisted unsupervised learning of restricted Boltzmann machines
    Haik Manukian
    Yan Ru Pei
    Sean R. B. Bearden
    Massimiliano Di Ventra
    Communications Physics, 3
  • [23] Learning Large Q-Matrix by Restricted Boltzmann Machines
    Chengcheng Li
    Chenchen Ma
    Gongjun Xu
    Psychometrika, 2022, 87 : 1010 - 1041
  • [24] Convolutional restricted Boltzmann machines learning for robust visual tracking
    Lei, Jun
    Li, GuoHui
    Tu, Dan
    Guo, Qiang
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (06): : 1383 - 1391
  • [25] Efficient Learning of Restricted Boltzmann Machines Using Covariance Estimates
    Upadhya, Vidyadhar
    Sastry, P. S.
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 851 - 866
  • [26] Deterministic and Generalized Framework for Unsupervised Learning with Restricted Boltzmann Machines
    Tramel, Eric W.
    Gabrie, Marylou
    Manoel, Andre
    Caltagirone, Francesco
    Krzakala, Florent
    PHYSICAL REVIEW X, 2018, 8 (04):
  • [27] Convolutional restricted Boltzmann machines learning for robust visual tracking
    Jun Lei
    GuoHui Li
    Dan Tu
    Qiang Guo
    Neural Computing and Applications, 2014, 25 : 1383 - 1391
  • [28] Learning Large Q-Matrix by Restricted Boltzmann Machines
    Li, Chengcheng
    Ma, Chenchen
    Xu, Gongjun
    PSYCHOMETRIKA, 2022, 87 (03) : 1010 - 1041
  • [29] An Overview of Restricted Boltzmann Machines
    Upadhya, Vidyadhar
    Sastry, P. S.
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2019, 99 (02) : 225 - 236
  • [30] Discrete Restricted Boltzmann Machines
    Montufar, Guido
    Morton, Jason
    JOURNAL OF MACHINE LEARNING RESEARCH, 2015, 16 : 653 - 672