Existence and uniqueness of quasi-stationary and quasi-ergodic measures for absorbing Markov chains: A Banach lattice approach

被引:0
|
作者
Castro, Matheus M. [1 ]
Lamb, Jeroen S. W. [1 ,2 ,3 ]
Olicon-Mendez, Guillermo [4 ]
Rasmussen, Martin [1 ]
机构
[1] Imperial Coll London, Dept Math, London SW7 2AZ, England
[2] Univ Tokyo, Int Res Ctr Neurointelligence, Tokyo 1130033, Japan
[3] Gulf Univ Sci & Technol, Ctr Appl Math & Bioinformat, Dept Math & Nat Sci, Halwally, Kuwait
[4] Univ Potsdam, Inst Math, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
基金
英国工程与自然科学研究理事会; 巴西圣保罗研究基金会;
关键词
Markov chains with absorption; Banach lattice; Quasi-stationary measure; Quasi-ergodic measure; Yaglom limit; ONE-DIMENSIONAL DIFFUSIONS; DISTRIBUTIONS; TIME; CONVERGENCE; LIMITS;
D O I
10.1016/j.spa.2024.104364
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish the existence and uniqueness of quasi -stationary and quasi-ergodic measures for almost surely absorbed discrete -time Markov chains under weak conditions. We obtain our results by exploiting Banach lattice properties of transition functions under natural regularity assumptions.
引用
收藏
页数:19
相关论文
共 36 条