Stochastic inversion of fracture networks using the reversible jump Markov chain Monte Carlo algorithm

被引:1
|
作者
Feng, Runhai [1 ]
Nasser, Saleh [2 ]
机构
[1] Aramco Asia, Aramco Res Ctr Beijing, Beijing, Peoples R China
[2] Saudi Aramco, Geophys Technol, EXPEC Adv Res Ctr, Dhahran, Saudi Arabia
关键词
Fracture geometry; Stochastic inversion; rjMCMC; Parallel tempering; Probability distribution;
D O I
10.1016/j.energy.2024.131375
中图分类号
O414.1 [热力学];
学科分类号
摘要
Characterization of fracture networks is essential in the production optimization or storage calculation for enhanced geothermal systems or geologic carbon storage. A novel inversion approach is proposed for estimating the fracture networks in this research. The discrete fracture network technique is adopted to probabilistically describe various fracture parameters such as trace length, midpoint position or azimuthal angle. The reversible jump Markov chain Monte Carlo algorithm is applied to explore the target posterior distribution of model parameters of differing dimensionality, in which the number of fractures is assumed to be unknown. More specifically, the birth-death strategy is utilized to perturb the fracture number iteratively in the sampling process. The proposed methodology is applied with two different types of observational datasets, namely the head records from steady-state flow simulation and the acoustic impedance obtained from seismic inversion. The sampling results can successfully recover the fracture geometry in the observed domain, and the number of fractures in the system can be retrieved as well. Benchmarked on multiple Markov chain trials, the technique of parallel tempering can greatly improve the convergence efficiency and increase the diversity of sampled posterior models, through the random swapping of model states across the whole temperature ladder.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Model comparison for Gibbs random fields using noisy reversible jump Markov chain Monte Carlo
    Bouranis, Lampros
    Friel, Nial
    Maire, Florian
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 128 : 221 - 241
  • [42] Bayesian analysis of quantitative trait locus data using reversible jump Markov chain Monte Carlo
    Stephens, DA
    BIOMETRICS, 1998, 54 (04) : 1334 - 1347
  • [43] Motor unit number estimation using reversible jump Markov chain Monte Carlo methods - Discussion
    Papaspiliopoulos, Omiros
    Andrieu, Christophe
    Glasbey, Chris
    Blok, Joleen H.
    Visser, Gerhard H.
    Aitkin, Murray
    Fearnside, A. T.
    Gibson, Gavin J.
    McGrory, Clare Anne
    Stashuk, Daniel W.
    Torsney, Ben
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2007, 56 : 260 - 269
  • [44] Multiple Emitter Fitting and Structured Background Detection using Reversible Jump Markov Chain Monte Carlo
    Fazel, Mohamadreza
    Meddens, Marjolein B. M.
    Wester, Michael J.
    Lidke, Keith A.
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 531A - 531A
  • [45] Bayesian analysis of quantitative trait locus data using reversible jump Markov chain Monte Carlo
    Department of Mathematics, Imperial College London, Huxley Building, 180 Queens Gate, London SW7 2BZ, United Kingdom
    不详
    Biometrics, 4 (1334-1347):
  • [46] Inference of demographic history from genealogical trees using reversible jump Markov chain Monte Carlo
    Rainer Opgen-Rhein
    Ludwig Fahrmeir
    Korbinian Strimmer
    BMC Evolutionary Biology, 5
  • [47] Silhouette-based human pose estimation using reversible jump Markov chain Monte Carlo
    Huang, S. -S.
    Fu, L. -C.
    Hsiao, P. -Y.
    ELECTRONICS LETTERS, 2006, 42 (10) : 575 - 577
  • [48] An efficient interpolation technique for jump proposals in reversible-jump Markov chain Monte Carlo calculations
    Farr, W. M.
    Mandel, I.
    Stevens, D.
    ROYAL SOCIETY OPEN SCIENCE, 2015, 2 (06):
  • [49] Parameter Identification in Degradation Modeling by Reversible-Jump Markov Chain Monte Carlo
    Zio, Enrico
    Zoia, Andrea
    IEEE TRANSACTIONS ON RELIABILITY, 2009, 58 (01) : 123 - 131
  • [50] Reversible jump Markov chain Monte Carlo signal detection in functional neuroimaging analysis
    Lukic, AS
    Wernick, MN
    Galatsanos, NP
    Yang, YY
    Strother, SC
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 and 2, 2004, : 868 - 871