Stochastic inversion of fracture networks using the reversible jump Markov chain Monte Carlo algorithm

被引:1
|
作者
Feng, Runhai [1 ]
Nasser, Saleh [2 ]
机构
[1] Aramco Asia, Aramco Res Ctr Beijing, Beijing, Peoples R China
[2] Saudi Aramco, Geophys Technol, EXPEC Adv Res Ctr, Dhahran, Saudi Arabia
关键词
Fracture geometry; Stochastic inversion; rjMCMC; Parallel tempering; Probability distribution;
D O I
10.1016/j.energy.2024.131375
中图分类号
O414.1 [热力学];
学科分类号
摘要
Characterization of fracture networks is essential in the production optimization or storage calculation for enhanced geothermal systems or geologic carbon storage. A novel inversion approach is proposed for estimating the fracture networks in this research. The discrete fracture network technique is adopted to probabilistically describe various fracture parameters such as trace length, midpoint position or azimuthal angle. The reversible jump Markov chain Monte Carlo algorithm is applied to explore the target posterior distribution of model parameters of differing dimensionality, in which the number of fractures is assumed to be unknown. More specifically, the birth-death strategy is utilized to perturb the fracture number iteratively in the sampling process. The proposed methodology is applied with two different types of observational datasets, namely the head records from steady-state flow simulation and the acoustic impedance obtained from seismic inversion. The sampling results can successfully recover the fracture geometry in the observed domain, and the number of fractures in the system can be retrieved as well. Benchmarked on multiple Markov chain trials, the technique of parallel tempering can greatly improve the convergence efficiency and increase the diversity of sampled posterior models, through the random swapping of model states across the whole temperature ladder.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Introduction to Subsurface Inversion Using Reversible Jump Markov-chain Monte Carlo
    Jun, Hyunggu
    Cho, Yongchae
    [J]. GEOPHYSICS AND GEOPHYSICAL EXPLORATION, 2022, 25 (04): : 252 - 265
  • [2] A reversible jump Markov chain Monte Carlo algorithm for 1D inversion of magnetotelluric data
    Mandolesi, Eric
    Ogaya, Xenia
    Campanya, Joan
    Agostinetti, Nicola Piana
    [J]. COMPUTERS & GEOSCIENCES, 2018, 113 : 94 - 105
  • [3] Reversible jump Markov chain Monte Carlo for deconvolution
    Kang, Dongwoo
    Verotta, Davide
    [J]. JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2007, 34 (03) : 263 - 287
  • [4] Reversible Jump Markov Chain Monte Carlo for Deconvolution
    Dongwoo Kang
    Davide Verotta
    [J]. Journal of Pharmacokinetics and Pharmacodynamics, 2007, 34 : 263 - 287
  • [5] Model choice using reversible jump Markov chain Monte Carlo
    Hastie, David I.
    Green, Peter J.
    [J]. STATISTICA NEERLANDICA, 2012, 66 (03) : 309 - 338
  • [6] A reversible jump Markov chain Monte Carlo algorithm for analysis of functional neuroimages
    Lukic, AS
    Wernick, MN
    Galatsanos, NP
    Yang, YY
    Strother, SC
    [J]. 2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2002, : 133 - 136
  • [7] Simulated annealing using a Reversible Jump Markov Chain Monte Carlo algorithm for fuzzy clustering
    Bandyopadhyay, S
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (04) : 479 - 490
  • [8] Multiple Damage Identification Using the Reversible Jump Markov Chain Monte Carlo
    Tiboaca, Daniela
    Barthorpe, Robert J.
    Antoniadou, Ifigeneia
    Worden, Keith
    [J]. STRUCTURAL HEALTH MONITORING 2015: SYSTEM RELIABILITY FOR VERIFICATION AND IMPLEMENTATION, VOLS. 1 AND 2, 2015, : 2374 - 2382
  • [9] A reversible jump Markov chain Monte Carlo algorithm for bacterial promoter motifs discovery
    Nicolas, Pierre
    Tocquet, Anne-Sophie
    Miele, Vincent
    Muri, Florence
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2006, 13 (03) : 651 - 667
  • [10] Transdimensional seismic inversion using the reversible jump Hamiltonian Monte Carlo algorithm
    Sen, Mrinal K.
    Biswas, Reetam
    [J]. GEOPHYSICS, 2017, 82 (03) : R119 - R134