On some hypersurfaces of S2 x S2 and H2 x H2

被引:0
|
作者
Hu, Zejun [1 ]
Zhang, Xi [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Real hypersurface; Hopf hypersurface; Product angle function; Shape operator; Structure Jacobi operator; STRUCTURE JACOBI OPERATOR; REAL HYPERSURFACES; NONEXISTENCE; SURFACES;
D O I
10.1007/s13398-024-01612-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first classify Hopf hypersurfaces of both S-2 x S(2 )and H(2 )x( )H(2) which satisfy one of the three conditions: (1) constant mean curvature, (2) constant scalar curvature, (3) constant squared norm of the shape operator. It follows that these three conditions are equivalent for a Hopf hypersurface of both S-2 x S(2 )and H(2 )x( )H(2). Then, we classify hypersurfaces of both S-2 x S(2 )and H(2 )x( )H(2 )whose structure Jacobi operator is of Codazzi type. As its direct consequence, we obtain the classification of hypersurfaces in both S-2 x S(2 )and H(2 )x( )H(2) for which the structure Jacobi operator satisfies one of the six conditions: (1) vanishing, (2) parallel, (3) recurrent, (4) semi-parallel, (5) Lie parallel, (6) Killing type.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] On Quadratic Differentials and Twisted Normal Maps of Surfaces in S2 x R and H2 x R
    Leite, Maria Luiza
    Ripoll, Jaime
    RESULTS IN MATHEMATICS, 2011, 60 (1-4) : 351 - 360
  • [22] A Hopf differential for constant mean curvature surfaces in S2 x R and H2 x R
    Abresch, U
    Rosenberg, H
    ACTA MATHEMATICA, 2004, 193 (02) : 141 - 174
  • [23] New Examples of Constant Mean Curvature Surfaces in S2 x R and H2 x R
    Manzano, Jose M.
    Torralbo, Francisco
    MICHIGAN MATHEMATICAL JOURNAL, 2014, 63 (04) : 701 - 723
  • [24] CONSTANT MEAN CURVATURE ISOMETRIC IMMERSIONS INTO S2 x R AND H2 x R AND RELATED RESULTS
    Daniel, Benoit
    Domingos, Iury
    Vitorio, Feliciano
    ANNALES DE L INSTITUT FOURIER, 2023, 73 (01) : 203 - 249
  • [25] Surfaces with constant curvature in S2 x R and H2 x R.: Height estimates and representation
    Aledo, Juan A.
    Espinar, Jose M.
    Galvez, Jose A.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2007, 38 (04): : 533 - 554
  • [26] On hypersurfaces of H2×H2
    Dong Gao
    Hui Ma
    Zeke Yao
    ScienceChina(Mathematics), 2024, 67 (02) : 339 - 366
  • [27] Minimal Surfaces in S2 x S2
    Torralbo, Francisco
    Urbano, Francisco
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) : 1132 - 1156
  • [28] INFINITE BOUNDARY VALUE PROBLEMS FOR CONSTANT MEAN CURVATURE GRAPHS IN H2 x R AND S2 x R
    Hauswirth, Laurent
    Rosenberg, Harold
    Spruck, Joel
    AMERICAN JOURNAL OF MATHEMATICS, 2009, 131 (01) : 195 - 226
  • [29] Conformally formal manifolds and the uniformly quasiregular non-ellipticity of (S2 x S2)#(S2 x S2)
    Kangasniemi, Ilmari
    ADVANCES IN MATHEMATICS, 2021, 393
  • [30] Stability of fuzzy S2 x S2 x S2 in IIB type matrix models
    Kaneko, H
    Kitazawa, Y
    Tomino, D
    NUCLEAR PHYSICS B, 2005, 725 (1-2) : 93 - 114