A New Fractional-Order Grey Prediction Model without a Parameter Estimation Process

被引:2
|
作者
Wang, Yadong [1 ]
Liu, Chong [2 ]
机构
[1] Guangzhou Univ, Publ Adm Sch, Guangzhou 510006, Peoples R China
[2] Inner Mongolia Agr Univ, Sch Sci, Hohhot 010018, Peoples R China
关键词
fractional-order grey prediction model; marine predators algorithm; grey system theory;
D O I
10.3390/fractalfract8070396
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The fractional-order grey prediction model is widely recognized for its performance in time series prediction tasks with small sample characteristics. However, its parameter-estimation method, namely the least squares method, limits the predictive performance of the model and requires time to address the ill-conditioning of the system. To address these issues, this paper proposes a novel parameter-acquisition method treating structural parameters as hyperparameters, obtained through the marine predators optimization algorithm. The experimental analysis on three datasets validate the effectiveness of the method proposed in this paper.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] The Superiority Analysis of Two Kinds of Discrete Grey Model with Fractional-Order Accumulation
    Liu, Jiefang
    Gao, Pumei
    Li, Shanshan
    Li, Bingjun
    JOURNAL OF GREY SYSTEM, 2021, 33 (04): : 129 - 137
  • [42] Design of an Optimal Input Signal for Parameter Estimation of Linear Fractional-Order Systems
    Jakowluk, Wiktor
    ADVANCES IN NON-INTEGER ORDER CALCULUS AND ITS APPLICATIONS, 2020, 559 : 128 - 141
  • [43] An Image Edge Detection Method Based on Fractional-Order Grey System Model
    Jia, Li-Na
    Pang, Ming-Yong
    ELECTRONICS, 2022, 11 (22)
  • [44] Fractional-order variational optical flow model for motion estimation
    Chen, Dali
    Sheng, Hu
    Chen, YangQuan
    Xue, Dingyu
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1990):
  • [45] Fractional-Order Interval Parameter State Space Model of the One-Dimensional Heat Transfer Process
    Oprzedkiewicz, Krzysztof
    ENERGIES, 2024, 17 (14)
  • [46] On a new fractional-order Logistic model with feedback control
    Manh Tuan Hoang
    A. M. Nagy
    Applied Mathematics-A Journal of Chinese Universities, 2021, 36 : 390 - 402
  • [47] Fractional-Order Model-Free Adaptive Control with High Order Estimation
    Lv, Zhuo-Xuan
    Liao, Jian
    MATHEMATICS, 2024, 12 (05)
  • [48] On a new fractional-order Logistic model with feedback control
    Manh Tuan Hoang
    Nagy, A. M.
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2021, 36 (03) : 390 - 402
  • [49] On a new fractional-order Logistic model with feedback control
    Manh Tuan Hoang
    A.M.Nagy
    Applied Mathematics:A Journal of Chinese Universities, 2021, 36 (03) : 390 - 402
  • [50] Fault estimation for fractional-order systems without the observer matching condition and equality constraintFault Estimation for Fractional-Order SystemsZ. Han et al.
    Zhijie Han
    Huaguang Zhang
    Yunfei Mu
    Yuqing Yan
    Nonlinear Dynamics, 2025, 113 (13) : 16477 - 16491