Dual-Branch Adaptive Convolutional Transformer for Hyperspectral Image Classification

被引:1
|
作者
Wang, Chuanzhi [1 ]
Huang, Jun [1 ]
Lv, Mingyun [1 ]
Wu, Yongmei [1 ]
Qin, Ruiru [1 ]
机构
[1] Beihang Univ, Sch Aeronaut Sci & Engn, Beijing 100191, Peoples R China
关键词
hyperspectral image classification; adaptive multi-head self-attention; convolutional neural networks; transformers; RESIDUAL NETWORK; ATTENTION;
D O I
10.3390/rs16091615
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In hyperspectral image (HSI) classification, convolutional neural networks (CNNs) and transformer architectures have each contributed to considerable advancements. CNNs possess potent local feature representation skills, whereas transformers excel in learning global features, offering a complementary strength. Nevertheless, both architectures are limited by static receptive fields, which hinder their accuracy in delineating subtle boundary discrepancies. To mitigate the identified limitations, we introduce a novel dual-branch adaptive convolutional transformer (DBACT) network architecture featuring an adaptive multi-head self-attention mechanism. The architecture begins with a triadic parallel stem structure for shallow feature extraction and reduction of the spectral dimension. A global branch with adaptive receptive fields performs high-level global feature extraction. Simultaneously, a local branch with a cross-attention module provides detailed local insights, enriching the global perspective. This methodical integration synergizes the advantages of both branches, capturing representative spatial-spectral features from HSI. Comprehensive evaluation across three benchmark datasets reveals that the DBACT model exhibits superior classification performance compared to leading-edge models.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] DDT: Dual-branch Deformable Transformer for Image Denoising
    Liu, Kangliang
    Du, Xiangcheng
    Liu, Sijie
    Zheng, Yingbin
    Wu, Xingjiao
    Jin, Cheng
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2765 - 2770
  • [22] Dual-Branch Domain Adaptation Few-Shot Learning for Hyperspectral Image Classification
    Wang, Zhuowei
    Zhao, Shihui
    Zhao, Genping
    Song, Xiaoyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 16
  • [23] Convolutional Transformer Network for Hyperspectral Image Classification
    Zhao, Zhengang
    Hu, Dan
    Wang, Hao
    Yu, Xianchuan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [24] Dual-branch dense residual network for hyperspectral imagery classification
    Wang, Yuhao
    Liang, Binxiu
    Ding, Meng
    Li, Jiangyun
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (07) : 2581 - 2602
  • [25] A dual-branch siamese spatial-spectral transformer attention network for Hyperspectral Image Change Detection
    Zhang, Yiyan
    Wang, Tingting
    Zhang, Chenkai
    Xu, Shufang
    Gao, Hongmin
    Li, Chenming
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [26] Deep Image Classification Model Based on Dual-Branch
    Chen, Haoyu
    Lv, Qi
    Zhou, Wei
    Zheng, Jiang
    Wang, Jian
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, VOL. 1, 2022, 878 : 636 - 643
  • [27] Dual-branch vision transformer for blind image quality assessment*
    Lee, Se-Ho
    Kim, Seung-Wook
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 94
  • [28] Multiscale Dual-Branch Residual Spectral-Spatial Network With Attention for Hyperspectral Image Classification
    Ghaderizadeh, Saeed
    Abbasi-Moghadam, Dariush
    Sharifi, Alireza
    Tariq, Aqil
    Qin, Shujing
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 5455 - 5467
  • [29] A dual-branch multi-feature deep fusion network framework for hyperspectral image classification
    Liu, Linfeng
    Zhang, Chengcai
    Luo, Weiran
    GEOCARTO INTERNATIONAL, 2022, 37 (27) : 18692 - 18715
  • [30] Dual-Branch Fourier-Mixing Transformer Network for Hyperspectral Target Detection
    Jiao, Jinyue
    Gong, Zhiqiang
    Zhong, Ping
    REMOTE SENSING, 2023, 15 (19)