Differentiating Benign from Malignant Cystic Renal Masses using CT Texture-based Machine Learning Algorithms

被引:1
|
作者
Ranlachandran, Anupama
机构
来源
RADIOLOGY-IMAGING CANCER | 2024年 / 6卷 / 02期
关键词
D O I
10.1148/rycan.249007
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
[No abstract available]
引用
收藏
页数:1
相关论文
共 50 条
  • [11] Prediction of Benign or Malignant Breast Masses Using Texture Features from Digital Mammograms by Three Machine Learning Methods
    Cui, Y.
    Li, Y.
    Zhu, J.
    Dong, J.
    MEDICAL PHYSICS, 2019, 46 (06) : E360 - E360
  • [12] Water level estimation in sewage pipes using texture-based methods and machine learning algorithms
    Bhase, K.
    Myrans, J.
    Everson, R.
    WATER SCIENCE AND TECHNOLOGY, 2025, 91 (06) : 746 - 756
  • [13] Diagnostic Value of Machine Learning-Based Quantitative Texture Analysis in Differentiating Benign and Malignant Thyroid Nodules
    Colakoglu, Bulent
    Alis, Deniz
    Yergin, Mert
    JOURNAL OF ONCOLOGY, 2019, 2019
  • [14] MACHINE LEARNING TO DISTINGUISH BENIGN AND MALIGNANT RENAL LESIONS BASED ON ROUTINE CT IMAGING
    Yu, Shuanbao
    Pokhrel, Gaurab
    Cui, Jinshan
    Tao, Jin
    Zhang, Xuepei
    JOURNAL OF UROLOGY, 2024, 211 (05): : E498 - E499
  • [15] A 10-minute CT protocol for differentiating benign from malignant adrenal masses
    Fogel, Joshua
    RADIOLOGY, 2007, 242 (03) : 947 - U3
  • [16] Classification of Benign and Malignant Renal Tumors Based on CT Scans and Clinical Data Using Machine Learning Methods
    Xu, Jie
    He, Xing
    Shao, Wei
    Bian, Jiang
    Terry, Russell
    INFORMATICS-BASEL, 2023, 10 (03):
  • [17] Stratification of malignant renal neoplasms from cystic renal lesions using deep learning and radiomics features based on a stacking ensemble CT machine learning algorithm
    He, Quan-Hao
    Tan, Hao
    Liao, Fang-Tong
    Zheng, Yi-Neng
    Lv, Fa-Jin
    Jiang, Qing
    Xiao, Ming-Zhao
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [18] CT-based radiomics analysis of different machine learning models for differentiating benign and malignant parotid tumors
    Yunlin Zheng
    Di Zhou
    Huan Liu
    Ming Wen
    European Radiology, 2022, 32 : 6953 - 6964
  • [19] CT-based radiomics analysis of different machine learning models for differentiating benign and malignant parotid tumors
    Zheng, Yunlin
    Zhou, Di
    Liu, Huan
    Wen, Ming
    EUROPEAN RADIOLOGY, 2022, 32 (10) : 6953 - 6964
  • [20] A 10-minute CT protocol for differentiating benign from malignant adrenal masses - Response
    Blake, Michael A.
    Kalra, Mannudeep K.
    Sweeney, Ann T.
    Lucey, Brian C.
    Maher, Michael M.
    Sahani, Dushyant V.
    Mueller, Peter R.
    Hahn, Peter F.
    Boland, Giles W.
    RADIOLOGY, 2007, 242 (03)