Dissecting the stochastic gravitational wave background with astrometry

被引:0
|
作者
Caliskan, Mesut [1 ]
Chen, Yifan [2 ]
Dai, Liang [3 ]
Kumar, Neha Anil [1 ]
Stomb, Isak [4 ]
Xue, Xiao [4 ,5 ]
机构
[1] Johns Hopkins Univ, William H Miller III Dept Phys & Astron, Baltimore, MD 21218 USA
[2] Niels Bohr Int Acad, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
[3] Univ Calif Berkeley, Dept Phys, 366 Phys North MC 7300, Berkeley, CA 94720 USA
[4] Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany
[5] Univ Hamburg, Inst Theoret Phys 2, D-22761 Hamburg, Germany
基金
新加坡国家研究基金会;
关键词
galaxy surveys; gravitational wave detectors; gravitational waves / experiments; millisecond pulsars; RADIATION; LIMITS;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Astrometry, the precise measurement of star motions, offers an alternative avenue to investigate low-frequency gravitational waves through the spatial deflection of photons, complementing pulsar timing arrays reliant on timing residuals. Upcoming data from Gaia, Theia, and Roman can not only cross-check pulsar timing array findings but also explore the uncharted frequency range bridging pulsar timing arrays and LISA. We present an analytical framework to evaluate the feasibility of detecting a gravitational wave background, considering measurement noise and the intrinsic variability of the stochastic background. Furthermore, we highlight astrometry's crucial role in uncovering key properties of the gravitational wave background, such as spectral index and chirality, employing information-matrix analysis. Finally, we simulate the emergence of quadrupolar correlations, commonly referred to as the generalized Hellings-Downs curves.
引用
收藏
页数:35
相关论文
共 50 条
  • [41] Improved reconstruction of a stochastic gravitational wave background with LISA
    Flauger, Raphael
    Karnesis, Nikolaos
    Nardini, Germano
    Pieroni, Mauro
    Ricciardone, Angelo
    Torrado, Jesus
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (01):
  • [42] Resonant gravitational wave antennas for stochastic background measurements
    Astone, P
    Pallottino, GV
    Pizzella, G
    CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (08) : 2019 - 2030
  • [43] Detecting the stochastic gravitational wave background with the TianQin detector
    Cheng, Jun
    Li, En-Kun
    Hu, Yi-Ming
    Liang, Zheng-Cheng
    Zhang, Jian-dong
    Mei, Jianwei
    PHYSICAL REVIEW D, 2022, 106 (12)
  • [44] Measuring the primordial gravitational waves from cosmic microwave background and stochastic gravitational wave background observations
    Li, Jun
    Guo, Guang-Hai
    MODERN PHYSICS LETTERS A, 2022, 37 (10)
  • [45] Electromagnetic antennas for the resonant detection of the stochastic gravitational wave background
    Herman, Nicolas
    Lehoucq, Leonard
    Fuzfa, Andre
    PHYSICAL REVIEW D, 2023, 108 (12)
  • [46] Discriminating between a stochastic gravitational wave background and instrument noise
    Adams, Matthew R.
    Cornish, Neil J.
    PHYSICAL REVIEW D, 2010, 82 (02):
  • [47] Effects of QCD equation of state on the stochastic gravitational wave background
    Anand, Sampurn
    Dey, Ujjal Kumar
    Mohanty, Subhendra
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (03):
  • [48] Reconstructing the spectral shape of a stochastic gravitational wave background with LISA
    Caprini, Chiara
    Figueroa, Daniel G.
    Flauger, Raphael
    Nardini, Germano
    Peloso, Marco
    Pieroni, Mauro
    Ricciardone, Angelo
    Tasinato, Gianmassimo
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (11):
  • [49] Stochastic gravitational wave background from light cosmic strings
    DePies, Matthew R.
    Hogan, Craig J.
    PHYSICAL REVIEW D, 2007, 75 (12):
  • [50] Detecting the stochastic gravitational wave background using pulsar timing
    Jenet, FA
    Hobbs, GB
    Lee, KJ
    Manchester, RN
    ASTROPHYSICAL JOURNAL, 2005, 625 (02): : L123 - L126