Soft materials, with the sensitivity to various external stimuli, exhibit high flexibility and stretchability. Accurate prediction of their mechanical behaviors requires advanced hyperelastic constitutive models incorporating multiple parameters. However,identifying multiple parameters under complex deformations remains a challenge, especially with limited observed data. In this study, we develop a physics-informed neural network(PINN) framework to identify material parameters and predict mechanical fields,focusing on compressible Neo-Hookean materials and hydrogels. To improve accuracy, we utilize scaling techniques to normalize network outputs and material parameters. This framework effectively solves forward and inverse problems, extrapolating continuous mechanical fields from sparse boundary data and identifying unknown mechanical properties.We explore different approaches for imposing boundary conditions(BCs) to assess their impacts on accuracy. To enhance efficiency and generalization, we propose a transfer learning enhanced PINN(TL-PINN), allowing pre-trained networks to quickly adapt to new scenarios. The TL-PINN significantly reduces computational costs while maintaining accuracy. This work holds promise in addressing practical challenges in soft material science, and provides insights into soft material mechanics with state-of-the-art experimental methods.
机构:
Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R ChinaBeijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
Jiang, Xiaotian
Zhang, Min
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R ChinaBeijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
Zhang, Min
Song, Yuchen
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R ChinaBeijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
Song, Yuchen
Chen, Hongjie
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Photon Res Inst, Dept Elect & Informat Engn, Hong Kong, Peoples R ChinaBeijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
Chen, Hongjie
Huang, Dongmei
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Photon Res Inst, Dept Elect & Informat Engn, Hong Kong, Peoples R China
Hong Kong Polytech Univ, Shenzhen Res Inst, Dept Elect Engn, Shenzhen 518057, Peoples R ChinaBeijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
Huang, Dongmei
Wang, Danshi
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R ChinaBeijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
机构:
Bauhaus Univ Weimar, Inst Struct Mech, D-99423 Weimar, GermanyTon Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
Goswami, Somdatta
Anitescu, Cosmin
论文数: 0引用数: 0
h-index: 0
机构:
Bauhaus Univ Weimar, Inst Struct Mech, D-99423 Weimar, GermanyTon Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
Anitescu, Cosmin
Chakraborty, Souvik
论文数: 0引用数: 0
h-index: 0
机构:
Univ Notre Dame, Ctr Informat & Computat Sci, Notre Dame, IN 46556 USA
Univ British Columbia, Fac Appl Sci, Sch Engn, Okanagan Campus, Kelowna, BC, CanadaTon Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
Chakraborty, Souvik
Rabczuk, Timon
论文数: 0引用数: 0
h-index: 0
机构:
Ton Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
Ton Duc Thang Univ, Fac Civil Engn, Ho Chi Minh City, VietnamTon Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
机构:
Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14850 USACornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14850 USA
Li, He-Wen-Xuan
论文数: 引用数:
h-index:
机构:
Lu, Lin
Cao, Qianying
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Univ Technol, State Key Lab Coastal & Offshore Engn, Dalian 116024, Peoples R China
Brown Univ, Div Appl Math, Providence, RI 02906 USA
Dalian Univ Technol, State Key Lab Coastal & Offshore Engn, Dalian 116024, Peoples R ChinaCornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14850 USA