Boosting Adaptive Weighted Broad Learning System for Multi-Label Learning

被引:0
|
作者
Yuanxin Lin [1 ]
Zhiwen Yu [2 ,1 ,3 ]
Kaixiang Yang [2 ,1 ]
Ziwei Fan [2 ,1 ]
CLPhilip Chen [2 ,1 ]
机构
[1] the School of Computer Science and Engineering in South China University of Technology
[2] IEEE
[3] the Pengcheng
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label classification is a challenging problem that has attracted significant attention from researchers, particularly in the domain of image and text attribute annotation. However, multi-label datasets are prone to serious intra-class and inter-class imbalance problems, which can significantly degrade the classification performance. To address the above issues, we propose the multi-label weighted broad learning system(MLW-BLS) from the perspective of label imbalance weighting and label correlation mining. Further, we propose the multi-label adaptive weighted broad learning system(MLAW-BLS) to adaptively adjust the specific weights and values of labels of MLW-BLS and construct an efficient imbalanced classifier set. Extensive experiments are conducted on various datasets to evaluate the effectiveness of the proposed model, and the results demonstrate its superiority over other advanced approaches.
引用
收藏
页码:2204 / 2219
页数:16
相关论文
共 50 条
  • [31] Multi-Directional Multi-Label Learning
    Wu, Danyang
    Pei, Shenfei
    Nie, Feiping
    Wang, Rong
    Li, Xuelong
    SIGNAL PROCESSING, 2021, 187
  • [32] Multi-instance multi-label learning
    Zhou, Zhi-Hua
    Zhang, Min-Ling
    Huang, Sheng-Jun
    Li, Yu-Feng
    ARTIFICIAL INTELLIGENCE, 2012, 176 (01) : 2291 - 2320
  • [33] Multi-Label Learning With Hidden Labels
    Huang, Jun
    Rui, Haowei
    Li, Guorong
    Qu, Xiwen
    Tao, Tao
    Zheng, Xiao
    IEEE ACCESS, 2020, 8 : 29667 - 29676
  • [34] A Unified Multi-label Relationship Learning
    Rastogi, Reshma
    Popli, Simran
    Moktan, Nima Dorji
    Sharma, Sweta
    14TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND EDUCATION (ICCSE 2019), 2019, : 686 - 691
  • [35] Multi-label Software Behavior Learning
    Feng, Yang
    Chen, Zhenyu
    2012 34TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE), 2012, : 1305 - 1308
  • [36] Robust Extreme Multi-label Learning
    Xu, Chang
    Tao, Dacheng
    Xu, Chao
    KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 1275 - 1284
  • [37] Multi-Label Learning for Activity Recognition
    Kumar, R.
    Qamar, I.
    Virdi, J. S.
    Krishnan, N. C.
    2015 INTERNATIONAL CONFERENCE ON INTELLIGENT ENVIRONMENTS IE 2015, 2015, : 152 - 155
  • [38] Metric Learning for Multi-label Classification
    Brighi, Marco
    Franco, Annalisa
    Maio, Dario
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2020, 2021, 12644 : 24 - 33
  • [39] Collaboration Based Multi-Label Learning
    Feng, Lei
    An, Bo
    He, Shuo
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 3550 - 3557
  • [40] Hyperspherical Learning in Multi-Label Classification
    Ke, Bo
    Zhu, Yunquan
    Li, Mengtian
    Shu, Xiujun
    Qiao, Ruizhi
    Ren, Bo
    COMPUTER VISION, ECCV 2022, PT XXV, 2022, 13685 : 38 - 55