On the Optimal Controller for LTV Measurement Feedback Control Problem

被引:0
|
作者
Ting GONGYu Feng LU School of Mathematical SciencesDalian University of TechnologyLiaoning PRChina [116024 ]
机构
关键词
D O I
暂无
中图分类号
O232 [最优控制];
学科分类号
摘要
In this paper,we consider the measurement feedback control problem for discrete linear time-varying systems within the framework of nest algebra consisting of causal and bounded linear operators.Based on the inner-outer factorization of operators,we reduce the control problem to a distance from a certain operator to a special subspace of a nest algebra and show the existence of the optimal LTV controller in two different ways:one via the characteristic of the subspace in question directly,the other via the duality theory.The latter also gives a new formula for computing the optimal cost.
引用
收藏
页码:393 / 401
页数:9
相关论文
共 50 条
  • [41] Feedback Optimal Control Problem for a Network Model of Viscous Fluid Flows
    E. S. Baranovskii
    Mathematical Notes, 2022, 112 : 26 - 39
  • [42] Formulation of a Hamiltonian Cauchy problem for solving optimal feedback control problems
    Park, Chandeok
    Scheeres, Daniel J.
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 2793 - 2798
  • [43] Robust state feedback control of LTV systems: Nonlinear is better than linear
    Blanchini, F
    Megretski, A
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (04) : 802 - 807
  • [45] Approximate Optimal Control via Measurement Feedback for a Class of Nonlinear Systems
    Mylvaganam, T.
    Sassano, M.
    IFAC PAPERSONLINE, 2017, 50 (01): : 15391 - 15396
  • [46] Fixed poles of H2 optimal control by measurement feedback
    Camart, JF
    Del-Muro-Cuellar, B
    Malabre, M
    SYSTEM STRUCTURE AND CONTROL 2001, VOLS 1 AND 2, 2001, : 83 - 88
  • [47] Fixed poles of H2 optimal control by measurement feedback
    Camart, JF
    del-Muro-Cuéllar, B
    Malabre, M
    KYBERNETIKA, 2002, 38 (05) : 631 - 642
  • [48] SYNTHESIS OF OPTIMAL FEEDBACK CONTROLLER BY NEURAL NETWORKS
    GOH, CJ
    EDWARDS, NJ
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1994, 25 (08) : 1235 - 1248
  • [49] Optimal State Feedback Controller for a Nuclear Reactor
    Vaswani, P. D.
    Chakraborty, Debraj
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2019, 66 (12) : 2379 - 2387
  • [50] Optimal measurement-based feedback control on noisy quantum systems
    Liu, Cheng-Cheng
    Wei, Ting-Sheng
    Shi, Jia-Dong
    Ding, Zhi-Yong
    He, Juan
    Wu, Tao
    Ye, Liu
    LASER PHYSICS LETTERS, 2021, 18 (11)