Acyclic Edge Coloring of Planar Graphs without Adjacent Triangles

被引:0
|
作者
Dezheng XIE Yanqing WU College of Mathematics and StatisticsChongqing UniversityChongqing PRChinaSchool of Mathematics and Computer ScienceShanxi Normal UniversityShanxi PRChina [1 ,1 ,2 ,1 ,401331 ,2 ,41000 ]
机构
关键词
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
摘要
An acyclic edge coloring of a graph G is a proper edge coloring such that there are no bichromatic cycles.The acyclic edge chromatic number of a graph G is the minimum number k such that there exists an acyclic edge coloring using k colors and is denoted by χ' a(G).In this paper we prove that χ ' a(G) ≤(G) + 5 for planar graphs G without adjacent triangles.
引用
收藏
页码:407 / 414
页数:8
相关论文
共 50 条
  • [21] Edge coloring of planar graphs without adjacent 7-cycles
    Zhang, Wenwen
    Wu, Jian-Liang
    THEORETICAL COMPUTER SCIENCE, 2018, 739 : 59 - 64
  • [22] Acyclic Edge Coloring of IC-planar Graphs
    Wen-yao SONG
    Yuan-yuan DUAN
    Juan WANG
    Lian-ying MIAO
    Acta Mathematicae Applicatae Sinica, 2020, 36 (03) : 581 - 589
  • [23] Acyclic Edge Coloring of IC-planar Graphs
    Wen-yao Song
    Yuan-yuan Duan
    Juan Wang
    Lian-ying Miao
    Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 581 - 589
  • [24] Acyclic edge coloring of planar graphs with large girth
    Yu, Dongxiao
    Hou, Jianfeng
    Liu, Guizhen
    Liu, Bin
    Xu, Lan
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (47-49) : 5196 - 5200
  • [25] Local conditions for planar graphs of acyclic edge coloring
    Wenwen Zhang
    Journal of Applied Mathematics and Computing, 2022, 68 : 721 - 738
  • [26] Local conditions for planar graphs of acyclic edge coloring
    Zhang, Wenwen
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (02) : 721 - 738
  • [27] Acyclic Edge Coloring of IC-planar Graphs
    Song, Wen-yao
    Duan, Yuan-yuan
    Wang, Juan
    Miao, Lian-ying
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (03): : 581 - 589
  • [28] A proper total coloring distinguishing adjacent vertices by sums of planar graphs without intersecting triangles
    Wang, Jihui
    Ma, Qiaoling
    Han, Xue
    Wang, Xiuyun
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 32 (02) : 626 - 638
  • [29] A proper total coloring distinguishing adjacent vertices by sums of planar graphs without intersecting triangles
    Jihui Wang
    Qiaoling Ma
    Xue Han
    Xiuyun Wang
    Journal of Combinatorial Optimization, 2016, 32 : 626 - 638
  • [30] A note on list edge coloring of planar graphs without adjacent short cycles
    Hu, Linna
    Song, Huimin
    Wu, Jian-Liang
    ARS COMBINATORIA, 2019, 143 : 3 - 12