Joint Similarities and Parameterizations for Dilations of Dual g-frame Pairs in Hilbert Spaces

被引:0
|
作者
Xun Xiang GUO
机构
[1] DepartmentofMathematics,SouthwesternUniversityofFinanceandEconomics
关键词
D O I
暂无
中图分类号
O177.1 [希尔伯特空间及其线性算子理论];
学科分类号
摘要
In this paper, we give an operator parameterization for the set of dilations of a given pair of dual g-frames and the set of dilations of pairs of dual g-frames of a given g-frame. In particular,for the dilations of a given pair of dual g-frames, we introduce the concept of joint complementary g-frames and prove that the joint complementary g-frames of a pair of dual g-frames are unique in the sense of joint similarity, which then helps to obtain a sufficient condition such that the complementary g-frames of a g-frame are unique in the sense of similarity and show that the set of dilations of a given dual g-frame pair are parameterized by a set of invertible diagonal operators. For the dilations of pairs of dual g-frames, we prove that the set of dilations of pairs of dual g-frames are parameterized by a set of invertible upper triangular operators.
引用
收藏
页码:1827 / 1840
页数:14
相关论文
共 41 条
  • [21] Dilation of Dual Frame Pairs in Hilbert C*-Modules
    Deguang Han
    Wu Jing
    David Larson
    Pengtong Li
    Ram N. Mohapatra
    Results in Mathematics, 2013, 63 : 241 - 250
  • [22] ON REDUNDANCY, DILATIONS AND CANONICAL DUALS OF g-FRAMES IN HILBERT SPACES
    Guo, Xunxiang
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (04) : 81 - 99
  • [23] Invertibility of g-frame multipliers and Bessel multipliers for unitary systems in Hilbert C*-modules
    Xiang, Zhong-Qi
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (08): : 1663 - 1681
  • [24] G-DUAL FRAMES IN HILBERT SPACES
    Dehghan, Mohammad Ali
    Fard, Mohammad Ali Hasankhani
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2013, 75 (01): : 129 - 140
  • [25] Controlled g-dual frames and their approximates in Hilbert spaces
    Ramezani, Sayyed Mehrab
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (02): : 421 - 429
  • [26] STABILITY OF DUAL g-FUSION FRAMES IN HILBERT SPACES
    Ghosh, Prasenjit
    Samanta, T. K.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2020, 26 (03): : 227 - 240
  • [27] G-dual Frames in Hilbert C*-module Spaces
    Ghobadzadeh, Fatemeh
    Najati, Abbas
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2018, 11 (01): : 65 - 79
  • [28] Construct approximate dual g-frames in Hilbert spaces
    Guo, Qianping
    Leng, Jingsong
    Li, Houbiao
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (02): : 245 - 258
  • [29] Oblique dual and g-dual frames in separable quaternionic Hilbert spaces
    Tian, Yu
    Zhang, Wei
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2024, 15 (04)
  • [30] Dual and canonical dual of controlled K-g-frames in Hilbert spaces
    Hosseinnezhad, Hessam
    TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (04) : 1181 - 1196