On the Characterization of Maximal Planar Graphs with a Given Signed Cycle Domination Number

被引:0
|
作者
Xiao Ming PI
机构
[1] DepartmentofMathematics,HarbinNormalUniversity
关键词
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
摘要
Let G =(V, E) be a simple graph. A function f : E → {+1,-1} is called a signed cycle domination function(SCDF) of G if ∑e∈E(C)f(e) ≥ 1 for every induced cycle C of G. The signed cycle domination number of G is defined as γ'sc(G) = min{∑e∈Ef(e)| f is an SCDF of G}. This paper will characterize all maximal planar graphs G with order n ≥ 6 and γ'sc(G) = n.
引用
收藏
页码:911 / 920
页数:10
相关论文
共 50 条
  • [21] Three conjectures on the signed cycle domination in graphs
    Jian Guan
    Xiaoyan Liu
    Changhong Lu
    Zhengke Miao
    Journal of Combinatorial Optimization, 2013, 25 : 639 - 645
  • [22] Maximal outerplanar graphs with semipaired domination number double the domination number
    Henning, Michael A.
    Kaemawichanurat, Pawaton
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [23] On the number of edges in graphs with a given connected domination number
    Sanchis, LA
    DISCRETE MATHEMATICS, 2000, 214 (1-3) : 193 - 210
  • [24] On the Signed strong total Roman domination number of graphs
    Mahmoodi, A.
    Atapour, M.
    Norouzian, S.
    TAMKANG JOURNAL OF MATHEMATICS, 2023, 54 (03): : 265 - 280
  • [25] On the spectral radius of graphs with a given domination number
    Stevanovic, Dragan
    Aouchiche, Mustapha
    Hansen, Pierre
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (8-9) : 1854 - 1864
  • [26] LAPLACIAN EIGENVALUES OF GRAPHS WITH GIVEN DOMINATION NUMBER
    Feng, Lihua
    Yu, Guihai
    Lin, Xiqin
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2009, 2 (01) : 71 - 76
  • [27] Upper signed k-domination number in graphs
    Zhou, Ligang
    Shan, Erfang
    Zhao, Yancai
    ARS COMBINATORIA, 2015, 122 : 307 - 318
  • [28] UPPER SIGNED TOTAL DOMINATION NUMBER OF DIRECTED GRAPHS
    Sheikholeslami, Seyed Mahmoud
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2012, 36 (02): : 349 - 354
  • [29] On the lower bounds of partial signed domination number of graphs
    Xing, HM
    Sun, L
    ARS COMBINATORIA, 2005, 74 : 269 - 273
  • [30] NEW BOUNDS ON THE SIGNED TOTAL DOMINATION NUMBER OF GRAPHS
    Mochaddam, Seyyed Mehdi Hosseini
    Mojdeh, Doost Ali
    Samadi, Babak
    Volkmann, Lutz
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (02) : 467 - 477