k-Walk-Regular Digraphs

被引:0
|
作者
Wen LIU Jing LIN Mathematics and Information CollegeHebei Normal UniversityHebei PRChinaSchool of Mathematical SciencesBeijing Normal UniversityBeijing PRChina [1 ,2 ,1 ,50016 ,2 ,100875 ]
机构
关键词
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
摘要
In this paper,we define a class of strongly connected digraph,called the k-walk- regular digraph,study some properties of it,provide its some algebraic characterization and point out that the 0-walk-regular digraph is the same as the walk-regular digraph discussed by Liu and Lin in 2010 and the D-walk-regular digraph is identical with the weakly distance-regular digraph defined by Comellas et al in 2004.
引用
收藏
页码:637 / 642
页数:6
相关论文
共 50 条
  • [31] MATCHINGS IN RANDOM REGULAR BIPARTITE DIGRAPHS
    WALKUP, DW
    DISCRETE MATHEMATICS, 1980, 31 (01) : 59 - 64
  • [32] The circular law for random regular digraphs
    Cook, Nicholas
    arXiv, 2017,
  • [33] STRUCTURE OF EIGENVECTORS OF RANDOM REGULAR DIGRAPHS
    Litvak, Alexander E.
    Lytova, Anna
    Tikhomirov, Konstantin
    Tomczak-Jaegermann, Nicole
    Youssef, Pierre
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (11) : 8097 - 8172
  • [34] The Circular Law for random regular digraphs
    Cook, Nicholas A.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (04): : 2111 - 2167
  • [35] Proper-walk connection of hamiltonian digraphs
    Li, Zhenzhen
    Wu, Baoyindureng
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 427
  • [36] k-semikernels, k-quasikernels, k-kernels in digraphs and their line digraphs
    Shan, Erfang
    Kang, Liying
    Lu, Qin
    UTILITAS MATHEMATICA, 2007, 72 : 267 - 277
  • [37] ON THE EXISTENCE OF K-KERNELS IN DIGRAPHS AND IN WEIGHTED DIGRAPHS
    Galeana-Sanchez, Hortensia
    Hernandez-Cruz, Cesar
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2010, 7 (02) : 201 - 215
  • [38] On the singularity of adjacency matrices for random regular digraphs
    Nicholas A. Cook
    Probability Theory and Related Fields, 2017, 167 : 143 - 200
  • [39] On the singularity of adjacency matrices for random regular digraphs
    Cook, Nicholas A.
    PROBABILITY THEORY AND RELATED FIELDS, 2017, 167 (1-2) : 143 - 200
  • [40] The genus distributions of 4-regular digraphs
    Hao, Rongxia
    Liu, Yanpei
    Zhang, Taoye
    Xu, Lanshuan
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2009, 43 : 79 - 90