k-Walk-Regular Digraphs

被引:0
|
作者
Wen LIU Jing LIN Mathematics and Information CollegeHebei Normal UniversityHebei PRChinaSchool of Mathematical SciencesBeijing Normal UniversityBeijing PRChina [1 ,2 ,1 ,50016 ,2 ,100875 ]
机构
关键词
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
摘要
In this paper,we define a class of strongly connected digraph,called the k-walk- regular digraph,study some properties of it,provide its some algebraic characterization and point out that the 0-walk-regular digraph is the same as the walk-regular digraph discussed by Liu and Lin in 2010 and the D-walk-regular digraph is identical with the weakly distance-regular digraph defined by Comellas et al in 2004.
引用
收藏
页码:637 / 642
页数:6
相关论文
共 50 条
  • [1] k-Walk-Regular Digraphs
    Wen LIU 1
    2.School of Mathematical Sciences
    Journal of Mathematical Research with Applications, 2011, (04) : 637 - 642
  • [2] On k-Walk-Regular Graphs
    Dalfo, C.
    Fiol, M. A.
    Garriga, E.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [3] The geometry of t-spreads in k-walk-regular graphs
    Dalf´o, C.
    Fiol, M.A.
    Garriga, E.
    Journal of Graph Theory, 2010, 64 (04): : 312 - 322
  • [4] The Geometry of t-Spreads in k-Walk-Regular Graphs
    Dalfo, C.
    Fiol, M. A.
    Garriga, E.
    JOURNAL OF GRAPH THEORY, 2010, 64 (04) : 312 - 322
  • [5] Walk Regular Digraphs
    Liu, Wen
    Lin, Jing
    ARS COMBINATORIA, 2010, 95 : 97 - 102
  • [6] On (l, m)-Walk-regular Digraphs
    Liu, Wen
    ARS COMBINATORIA, 2011, 100 : 281 - 287
  • [7] Directed cycle k-connectivity of complete digraphs and complete regular bipartite digraphs
    Wang, Chuchu
    Sun, Yuefang
    DISCRETE APPLIED MATHEMATICS, 2024, 358 : 203 - 213
  • [8] Normally Regular Digraphs
    Jorgensen, Leif K.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (04):
  • [9] Linear arboricity of regular digraphs
    Wei Hua He
    Hao Li
    Yan Dong Bai
    Qiang Sun
    Acta Mathematica Sinica, English Series, 2017, 33 : 501 - 508
  • [10] MAXIMUM DIAMETER OF REGULAR DIGRAPHS
    SOARES, J
    JOURNAL OF GRAPH THEORY, 1992, 16 (05) : 437 - 450