Stability of (p,Y)-Operator Frames

被引:0
|
作者
Zhi Hua GUO Huai Xin CAO Jun Cheng YIN College of Mathematics and Information ScienceShaanxi Normal UniversityShaanxi PRChinaCollege of ScienceChina Jiliang UniversityZhejiang PRChina [1 ,1 ,1 ,2 ,1 ,710062 ,2 ,310018 ]
机构
关键词
D O I
暂无
中图分类号
O177.1 [希尔伯特空间及其线性算子理论];
学科分类号
摘要
In this paper we study the stability of(p,Y)-operator frames.We firstly discuss the relations between p-Bessel sequences(or p-frames) and(p,Y)-operator Bessel sequences(or(p,Y)-operator frames).Through defining a new union,we prove that adding some elements to a given(p,Y)-operator frame,the resulted sequence will be still a(p,Y)-operator frame.We obtain a necessary and sufficient condition for a sequence of compound operators to be a(p,Y)operator frame.Lastly,we show that(p,Y)-operator frames for X are stable under some small perturbations.
引用
收藏
页码:535 / 544
页数:10
相关论文
共 50 条
  • [31] Operator Characterizations, Rigidity and Constructions of (Ω, μ)-Frames
    Guo, Xunxiang
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2018, 39 (03) : 346 - 360
  • [33] Cb-frames for operator spaces
    Liu, Rui
    Ruan, Zhong-Jin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (11) : 4280 - 4296
  • [34] DUALITY OF OPERATOR FRAMES IN BANACH SPACES
    Li, Chunyan
    Fan, Qibin
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2017, 79 (02): : 139 - 150
  • [35] Integral operator frames for B(H)
    Labrigui, Hatim
    Kabbaj, Samir
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2020, 23 (08) : 1519 - 1529
  • [36] OPERATOR BANACH FRAMES IN BANACH SPACES
    Shekhar, Chander
    JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 6 (03): : 17 - 26
  • [37] Stability results for Gabor frames and the p-order hold models
    De Carli, Laura
    Vellucci, Pierluigi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 536 : 186 - 200
  • [38] ON THE L(P) STABILITY FOR THE COMPLEX MONGE-AMPERE OPERATOR
    BLOCKI, Z
    MICHIGAN MATHEMATICAL JOURNAL, 1995, 42 (02) : 269 - 275
  • [39] G-FRAMES AND OPERATOR VALUED -FRAMES IN HILBERT C*-MODULES
    Hosseini, Sedighe
    Khosravi, Amir
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2011, 17 (01): : 10 - 19
  • [40] Stability of walking frames
    Deathe, A. Barry
    Pardo, Richard D.
    Winter, David A.
    Hayes, Keith C.
    Russell-Smyth, Jennifer
    Journal of Rehabilitation Research & Development, 1996, 33 (01):