On Nonuniqueness of Geodesics and Geodesic Disks in the Universal Asymptotic Teichmüller Space

被引:2
|
作者
Yi QI [1 ]
Yan WU [1 ,2 ]
机构
[1] LMIB and School of Mathematics and Systems Science,Beihang University
[2] School of Science,Linyi
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The non-uniqueness on geodesics and geodesic disks in the universal asymptotic Teichmüller space AT(D) are studied in this paper. It is proved that if μ is asymptotically extremal in [[μ]] with hζ*(μ) < h*(μ) for some point ζ∈ ?D, then there exist infinitely many geodesic segments joining [[0]]and [[μ]], and infinitely many holomorphic geodesic disks containing [[0]] and [[μ]] in AT(D).
引用
下载
收藏
页码:201 / 209
页数:9
相关论文
共 50 条
  • [31] The asymptotic geometry of the Teichmüller metric
    Cormac Walsh
    Geometriae Dedicata, 2019, 200 : 115 - 152
  • [32] Asymptotic Flatness of the Weil-Petersson Metric on Teichmüller Space
    Zheng Huang
    Geometriae Dedicata, 2005, 110 : 81 - 102
  • [33] Rigidity of Teichmüller space
    Georgios Daskalopoulos
    Chikako Mese
    Inventiones mathematicae, 2021, 224 : 791 - 916
  • [34] Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space
    Hideki Miyachi
    Geometriae Dedicata, 2008, 137 : 113 - 141
  • [35] On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller space
    D. Alessandrini
    L. Liu
    A. Papadopoulos
    W. Su
    Monatshefte für Mathematik, 2016, 179 : 165 - 189
  • [36] Integrable Teichmüller space
    Xueping Liu
    Yuliang Shen
    Mathematische Zeitschrift, 2022, 302 : 2233 - 2251
  • [37] On periodic Teichmüller disks of modular transformations
    Yan Huang
    Shengjian Wu
    Israel Journal of Mathematics, 2014, 202 : 491 - 508
  • [38] Coherence of Limit Points in the Fibers over the Asymptotic Teichmüller Space
    Ege Fujikawa
    Computational Methods and Function Theory, 2014, 14 : 357 - 370
  • [39] Characterizations of circle homeomorphisms of different regularities in the universal Teichmüller space
    Hu, Jun
    EMS SURVEYS IN MATHEMATICAL SCIENCES, 2022, 9 (02) : 321 - 353
  • [40] A quantum Teichmüller space
    V. V. Fock
    L. O. Chekhov
    Theoretical and Mathematical Physics, 1999, 120 : 1245 - 1259