L(j,k)-number of Direct Product of Path and Cycle

被引:4
|
作者
Wai Chee SHIU
Qiong WU
机构
[1] DepartmentofMathematics,HongKongBaptistUniversity
关键词
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
摘要
For positive numbers j and k, an L(j,k)-labeling f of G is an assignment of numbers to vertices of G such that |f(u)-f(v)|≥j if uv∈E(G), and |f(u)-f(v)|≥k if d(u,v)=2. Then the span of f is the difference between the maximum and the minimum numbers assigned by f. The L(j,k)-number of G, denoted by λj,k(G), is the minimum span over all L(j,k)-labelings of G. In this paper, we give some results about the L(j,k)-number of the direct product of a path and a cycle for j≤k.
引用
收藏
页码:1437 / 1448
页数:12
相关论文
共 50 条
  • [11] On L(d, 1)-labeling of Cartesian product of a cycle and a path
    Chiang, Shih-Hu
    Yan, Jing-Ho
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (15) : 2867 - 2881
  • [12] Computing the (k-)monopoly Number of Direct Product of Graphs
    Kuziak, Dorota
    Peterin, Iztok
    Yero, Ismael G.
    FILOMAT, 2015, 29 (05) : 1163 - 1171
  • [13] On L(2,1)-labeling of the Cartesian product of a cycle and a path
    Jha, PK
    Narayanan, A
    Sood, P
    Sundaram, K
    Sunder, V
    ARS COMBINATORIA, 2000, 55 : 81 - 89
  • [14] On the existence and on the number of (k, l)-kernels in the lexicographic product of graphs
    Szumny, Waldemar
    Wloch, Iwona
    Wloch, Andrzej
    DISCRETE MATHEMATICS, 2008, 308 (20) : 4616 - 4624
  • [15] Geometric origin of staggered fermion:: Direct product K-cycle
    Dai, J
    Xiong, CS
    Song, XC
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2003, 39 (05) : 519 - 520
  • [16] L(1, d)-labeling number of direct product of two cycles
    Wu, Qiong
    Shiu, Wai Chee
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (08): : 2097 - 2125
  • [17] L(j,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(j,k)$$\end{document}-labeling number of Cartesian product of path and cycle
    Qiong Wu
    Wai Chee Shiu
    Pak Kiu Sun
    Journal of Combinatorial Optimization, 2016, 31 (2) : 604 - 634
  • [18] Induced Cycle Path Number of Graphs
    Joseph, J. Paulraj
    Rosalin, S.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2015, 18 (06): : 887 - 901
  • [19] Minimum cycle basis of direct product of K2 x Kn
    Ghareghani, N.
    Khosrovshahi, G. B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 458 : 671 - 678
  • [20] The direct product of a star and a path is antimagic
    Latchoumanane, Vinothkumar
    Varadhan, Murugan
    Semanicova-Fenovcikova, Andrea
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 53 (06): : 1698 - 1711