On σ-semipermutable Subgroups of Finite Groups

被引:0
|
作者
Wen Bin GUO [1 ]
Alexander NSKIBA [2 ]
机构
[1] Department of Mathematics, University of Science and Technology of China
[2] Department of Mathematics and Technologies of Programming,Francisk Skorina Gomel State
关键词
D O I
暂无
中图分类号
O152.1 [有限群论];
学科分类号
摘要
Let σ = {σi|i ∈ I } be some partition of the set of all primes P, G a finite group andσ(G) = {σi |σi ∩π(G) = ?}. A set H of subgroups of G is said to be a complete Hall σ-set of G if every member = 1 of H is a Hall σi-subgroup of G for some σi ∈σ and H contains exactly one Hallσi-subgroup of G for every σi ∈σ(G). A subgroup H of G is said to be: σ-semipermutable in G with respect to H if H Hix= HixH for all x ∈ G and all Hi ∈ H such that(|H|, |Hi|) = 1; σ-semipermutable in G if H is σ-semipermutable in G with respect to some complete Hall σ-set of G. We study the structure of G being based on the assumption that some subgroups of G are σ-semipermutable in G.
引用
收藏
页码:1379 / 1390
页数:12
相关论文
共 50 条
  • [11] c-Semipermutable subgroups of finite groups
    B. Hu
    W. Guo
    Siberian Mathematical Journal, 2007, 48 : 180 - 188
  • [12] c-semipermutable subgroups of finite groups
    Hu, B.
    Guo, W.
    SIBERIAN MATHEMATICAL JOURNAL, 2007, 48 (01) : 180 - 188
  • [13] On s-semipermutable subgroups of finite groups
    Yang Ming Li
    Xuan Li He
    Yan Ming Wang
    Acta Mathematica Sinica, English Series, 2010, 26 : 2215 - 2222
  • [14] Finite groups with S-Semipermutable subgroups
    Zhao, Peichen
    Advances in Information Sciences and Service Sciences, 2012, 4 (08): : 61 - 66
  • [15] X-semipermutable subgroups of finite groups
    Guo, Wenbin
    Shum, K. P.
    Skiba, Alexander N.
    JOURNAL OF ALGEBRA, 2007, 315 (01) : 31 - 41
  • [16] FINITE GROUPS WITH SOME SUBGROUPS OF SYLOW SUBGROUPS s*-SEMIPERMUTABLE
    Kong, Qingjun
    Guo, Xiuyun
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2021, 58 (02) : 147 - 156
  • [17] On s-semipermutable subgroups of finite groups
    Li, Yang Ming
    He, Xuan Li
    Wang, Yan Ming
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (11) : 2215 - 2222
  • [18] Weakly s-semipermutable subgroups of finite groups
    Xu, Yong
    Li, Xianhua
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (01) : 161 - 175
  • [19] On Weakly s-Semipermutable Subgroups of Finite Groups
    Tang, Na
    Li, Xianhua
    ALGEBRA COLLOQUIUM, 2014, 21 (04) : 541 - 550
  • [20] A note on S-semipermutable subgroups of finite groups
    Yu, Haoran
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2017, 138 : 257 - 263