EXISTENCE RESULTS FOR FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATIONS WITH RIEMANN-LIOUVILLE DERIVATIVE

被引:0
|
作者
Jiaxing Zhou [1 ]
Hongwei Yin [1 ]
机构
[1] Dept. of Math., Nanchang University
关键词
fractional functional differential equation; existence; Riemann-Linville derivative;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper, using the contracting mapping principle and the monotone iterative method, we consider the existence of solution to the initial value problem of fractional functional differential equations with Riemann-Liouville derivative.
引用
收藏
页码:373 / 378
页数:6
相关论文
共 50 条
  • [31] Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative
    Wei, Zhongli
    Dong, Wei
    Che, Junling
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (10) : 3232 - 3238
  • [32] Approximate controllability for Riemann-Liouville fractional differential equations
    Sahijwani, Lavina
    Sukavanam, Nagarajan
    INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2023, 13 (01): : 59 - 67
  • [33] STABILITY OF THE NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH THE RIGHT-SIDED RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE
    Wang, Chun
    Xu, Tian-Zhou
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (03): : 505 - 521
  • [34] Attractivity of solutions of Riemann-Liouville fractional differential equations
    Zhu, Tao
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2022, (52) : 1 - 12
  • [35] QUASILINEARIZATION FOR FRACTIONAL DIFFERENTIAL EQUATIONS OF RIEMANN-LIOUVILLE TYPE
    Liu, Zhenhai
    Wang, Rui
    Zhao, Jing
    MISKOLC MATHEMATICAL NOTES, 2014, 15 (01) : 141 - 151
  • [36] Enlarged Controllability of Riemann-Liouville Fractional Differential Equations
    Karite, Touria
    Boutoulout, Ali
    Torres, Delfim F. M.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (09):
  • [37] Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative
    Wei, Zhongli
    Li, Qingdong
    Che, Junling
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 367 (01) : 260 - 272
  • [38] Existence and stability results for fractional-order pantograph differential equations involving Riemann-Liouville and Caputo fractional operators
    Mohamed Houas
    Amita Devi
    Anoop Kumar
    International Journal of Dynamics and Control, 2023, 11 : 1386 - 1395
  • [39] Existence and stability results for fractional-order pantograph differential equations involving Riemann-Liouville and Caputo fractional operators
    Houas, Mohamed
    Devi, Amita
    Kumar, Anoop
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2023, 11 (03) : 1386 - 1395
  • [40] Degenerate Linear Evolution Equations with the Riemann-Liouville Fractional Derivative
    Fedorov, V. E.
    Plekhanova, M. V.
    Nazhimov, R. R.
    SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (01) : 136 - 146