TIME-PERIODIC SOLUTIONS OF THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM

被引:1
|
作者
段仁军 [1 ]
刘双乾 [2 ]
机构
[1] Department of Mathematics, The Chinese University of Hong Kong
[2] Department of Mathematics,Jinan
关键词
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this note it is shown that the Vlasov-Poisson-Fokker-Planck system in the three-dimensional whole space driven by a time-periodic background profile near a positive constant state admits a time-periodic small-amplitude solution with the same period. The proof follows by the Serrin's method on the basis of the exponential time-decay property of the linearized system in the case of the constant background profile.
引用
收藏
页码:876 / 886
页数:11
相关论文
共 50 条
  • [21] Numerical approximation of the Vlasov-Poisson-Fokker-Planck system in two dimensions
    Wollman, Stephen
    Ozizmir, Ercument
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (18) : 6629 - 6669
  • [22] ASYMPTOTIC-BEHAVIOR FOR THE FRICTIONLESS VLASOV-POISSON-FOKKER-PLANCK SYSTEM
    CARRILLO, JA
    SOLER, J
    VAZQUEZ, JL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (09): : 1195 - 1200
  • [23] Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system
    Hsiao, Ling
    Li, Fucai
    Wang, Shu
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (03) : 579 - 589
  • [24] Asymptotic behaviour of the Vlasov-Poisson-Fokker-Planck system in bounded domains
    Bonilla, LL
    Carrillo, JA
    Soler, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 485 - 486
  • [25] Variational formulations for Vlasov-Poisson-Fokker-Planck systems
    Huang, CC
    Jordan, R
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2000, 23 (09) : 803 - 843
  • [26] High-field limit for the Vlasov-Poisson-Fokker-Planck system
    Nieto, J
    Poupaud, F
    Soler, J
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 158 (01) : 29 - 59
  • [27] Numerical approximation of the Vlasov-Poisson-Fokker-Planck system in one dimension
    Wollman, S
    Ozizmir, E
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 202 (02) : 602 - 644
  • [28] Convergence of the Vlasov-Poisson-Fokker-Planck system to the incompressible Euler equations
    XIAO Ling
    Department of Mathematics
    College of Applied Sciences
    ScienceinChina(SeriesA:Mathematics), 2006, (02) : 255 - 266
  • [29] The initial boundary value problem for the Vlasov-Poisson-Fokker-Planck system
    Ma, Xuan
    He, Fuli
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (09)
  • [30] A splitting Fourier pseudospectral method for Vlasov-Poisson-Fokker-Planck system
    Wang, Hanquan
    Cheng, Ronghua
    Wu, Xinming
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (06) : 1742 - 1758