Global existence and asymptotic behavior of solutions for the coupled Klein-Gordon-Schrodinger equations

被引:0
|
作者
郭柏灵
苗长兴
机构
[1] Beijing Iastitute of Applied Physics and Computational Mathematics
[2] Beijing
[3] China
[4] China Institute of System Science
[5] the Chinese Academy of Sciences
[6] Beijing
关键词
D O I
暂无
中图分类号
学科分类号
摘要
<正> The final value problem for the classical coupled Klein-Gordon-Schrodinger equations is studied in . This leads to the construction of the modified wave operator Ω, for certain scattered data. When initial functions belong to (Ω) which denotes the range domain of Ω, the global existence and asymptotic behavior of solutions of Cauchy problem tor the coupled Klein-Gordon-Schrodinger equations are proved.
引用
收藏
页码:1444 / 1456
页数:13
相关论文
共 50 条
  • [41] Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlinearity in two space dimensions
    Ozawa, T
    Tsutaya, K
    Tsutsumi, Y
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1996, 222 (03) : 341 - 362
  • [42] A Fourier spectral method for the nonlinear coupled space fractional Klein-Gordon-Schrodinger equations
    Jia, Junqing
    Jiang, Xiaoyun
    Yang, Xiu
    Zhang, Hui
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (02):
  • [43] COLLOCATION METHODS BASED ON RADIAL BASIS FUNCTIONS FOR THE COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS
    Golbabai, Ahmad
    Safdari-Vaighani, Ali
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2012, 39 : 22 - 31
  • [44] The periodic wave solutions for the (3+1)-dimensional Klein-Gordon-Schrodinger equations
    Li, XY
    Yang, S
    Wang, ML
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 25 (03) : 629 - 636
  • [45] DYNAMICS OF STOCHASTIC KLEIN-GORDON-SCHRODINGER EQUATIONS IN UNBOUNDED DOMAINS
    Lv, Yan
    Guo, Boling
    Yang, Xiaoping
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2011, 24 (3-4) : 231 - 260
  • [46] Existence and asymptotic behavior of solutions for a Klein-Gordon system
    Da Silva, Cladio O. P.
    Louredo, Aldo T.
    Miranda, Manuel Milla
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (07) : 3865 - 3895
  • [47] Global attractor and its dimension for a Klein-Gordon-Schrodinger system
    Poulou, M. N.
    Stavrakakis, N. M.
    [J]. HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON HYPERBOLIC PROBLEMS, 2008, : 1013 - 1020
  • [48] Efficient Structure Preserving Schemes for the Klein-Gordon-Schrodinger Equations
    Zhang, Yanrong
    Shen, Jie
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (02)
  • [49] Random attractors for stochastic discrete Klein-Gordon-Schrodinger equations
    Yan, Weiping
    Ji, Shuguan
    Li, Yong
    [J]. PHYSICS LETTERS A, 2009, 373 (14) : 1268 - 1275
  • [50] Efficient and accurate numerical methods for the Klein-Gordon-Schrodinger equations
    Bao, Weizhu
    Yang, Li
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (02) : 1863 - 1893