Nonlinear feedback control of Timoshenko beam

被引:0
|
作者
冯德兴
张维弢
机构
[1] Institute of Systems Science Chinese Academy of Sciences
[2] Beijing
[3] China
[4] Beijing
关键词
D O I
暂无
中图分类号
O231 [控制论(控制论的数学理论)];
学科分类号
摘要
<正> This note is concerned with nonlinear boundary feedback control of a Timoshenko beam. Under some nonlinear boundary feedback control, first the nonlinear semigroup theory is used to show the existence and uniqueness of solution for the corresponding closed loop system. Then by using the Lyapunov method, it is proved that the vibration of the beam under the proposed control action decays in a negative power of time t as t→.
引用
收藏
页码:918 / 927
页数:10
相关论文
共 50 条
  • [21] A geometrical nonlinear correction to the Timoshenko beam equation
    Arosio, A.
    Nonlinear Analysis, Theory, Methods and Applications, 2001, 47 (02): : 729 - 740
  • [23] Nonlinear Boundary Stabilization of Nonuniform Timoshenko Beam
    Qing-xu Yan
    Hui-chao Zou
    De-xing Feng
    Acta Mathematicae Applicatae Sinica, 2003, 19 (2) : 239 - 246
  • [24] On the nonlinear Timoshenko-Kirchhoff beam equation
    Arosio, A
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1999, 20 (04) : 495 - 506
  • [25] Boundary feedback stabilization of Timoshenko beam with boundary dissipation
    Institute of Systems Science, Chinese Academy of Sciences, Beijing 100080, China
    Sci China Ser A, 5 (X4-490):
  • [26] A numerical algorithm for the nonlinear Timoshenko beam system
    Peradze, Jemal
    Kalichava, Zviad
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (06) : 1318 - 1347
  • [27] On a Laminated Timoshenko Beam with Nonlinear Structural Damping
    Apalara, Tijani A.
    Nass, Aminu M.
    Al Sulaimani, Hamdan
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2020, 25 (02)
  • [28] TEMPERATURE INFLUENCE ON NONLINEAR RESPONSES OF TIMOSHENKO BEAM
    Warminska, Anna
    Warminski, Jerzy
    Manoach, Emil
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2013, VOL 7B, 2014,
  • [29] Boundary feedback stabilization of Timoshenko beam with boundary dissipation
    Feng, DX
    Shi, DH
    Zhang, WT
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (05): : 483 - 490
  • [30] Numerical Simulation for the Timoshenko Beam Equations with Boundary Feedback
    Wang, Dian-kun
    Li, Fu-le
    INTELLIGENT COMPUTING AND INFORMATION SCIENCE, PT I, 2011, 134 (0I): : 106 - 111