Cascadic multigrid methods for parabolic problems

被引:0
|
作者
DU Qiang1&MING PingBing2 1Department of Mathematics
机构
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
cascadic multigrid method; parabolic problem; finite element methods; backward Euler scheme; smoother; stability; optimal error order; optimal complexity;
D O I
暂无
中图分类号
O175.26 [抛物型方程];
学科分类号
摘要
In this paper,we consider the cascadic multigrid method for a parabolic type equation.Backward Euler approximation in time and linear finite element approximation in space are employed.A stability result is established under some conditions on the smoother.Using new and sharper estimates for the smoothers that reflect the precise dependence on the time step and the spatial mesh parameter,these conditions are verified for a number of popular smoothers.Optimal error bound sare derived for both smooth and non-smooth data.Iteration strategies guaranteeing both the optimal accuracy and the optimal complexity are presented.
引用
收藏
页码:1415 / 1439
页数:25
相关论文
共 50 条
  • [41] Analysis of extrapolation cascadic multigrid method (EXCMG)
    Chen ChuanMiao
    Hu HongLing
    Xie ZiQing
    Li ChenLiang
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (08): : 1349 - 1360
  • [42] Cascadic multilevel methods for ill-posed problems
    Reichel, Lothar
    Shyshkov, Andriy
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (05) : 1314 - 1325
  • [43] Economical cascadic multigrid method (ECMG)
    Zhong-ci SHI~1 Xue-jun XU~(1+) Yun-qing HUANG~2 ~1 LSEC
    ~2 Hunan Key Laboratory for Computation and Simulation in Science and Engineering
    ScienceinChina(SeriesA:Mathematics), 2007, (12) : 1765 - 1780
  • [44] Cascadic multigrid methods combined with sixth order compact scheme for poisson equation
    Li Ming
    Li Chen-liang
    Cui Xiang-zhao
    Zhao Jin-e
    Numerical Algorithms, 2016, 71 : 715 - 727
  • [45] A new extrapolation cascadic multigrid method for three dimensional elliptic boundary value problems
    Pan, Kejia
    He, Dongdong
    Hu, Hongling
    Ren, Zhengyong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 344 : 499 - 515
  • [46] Analysis of extrapolation cascadic multigrid method(EXCMG)
    CHEN ChuanMiao
    ScienceinChina(SeriesA:Mathematics), 2008, (08) : 1349 - 1360
  • [47] Analysis of extrapolation cascadic multigrid method (EXCMG)
    ChuanMiao Chen
    HongLing Hu
    ZiQing Xie
    ChenLiang Li
    Science in China Series A: Mathematics, 2008, 51 : 1349 - 1360
  • [48] Cascadic multigrid method for a plate bending problem
    Chinese Acad of Sciences, Beijing, China
    East West J Numer Math, 2 (137-153):
  • [49] A Subspace Cascadic Multigrid Method for Mortar Elements
    D. Braess
    P. Deuflhard
    K. Lipnikov
    Computing, 2002, 69 : 205 - 225
  • [50] MULTIGRID METHODS FOR OBSTACLE PROBLEMS
    Graeser, Carsten
    Kornhuber, Ralf
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2009, 27 (01) : 1 - 44