Cascadic multigrid methods for parabolic problems

被引:0
|
作者
DU Qiang1&MING PingBing2 1Department of Mathematics
机构
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
cascadic multigrid method; parabolic problem; finite element methods; backward Euler scheme; smoother; stability; optimal error order; optimal complexity;
D O I
暂无
中图分类号
O175.26 [抛物型方程];
学科分类号
摘要
In this paper,we consider the cascadic multigrid method for a parabolic type equation.Backward Euler approximation in time and linear finite element approximation in space are employed.A stability result is established under some conditions on the smoother.Using new and sharper estimates for the smoothers that reflect the precise dependence on the time step and the spatial mesh parameter,these conditions are verified for a number of popular smoothers.Optimal error bound sare derived for both smooth and non-smooth data.Iteration strategies guaranteeing both the optimal accuracy and the optimal complexity are presented.
引用
收藏
页码:1415 / 1439
页数:25
相关论文
共 50 条
  • [1] Cascadic multigrid methods for parabolic problems
    Qiang Du
    PingBing Ming
    Science in China Series A: Mathematics, 2008, 51 : 1415 - 1439
  • [2] Cascadic multigrid methods for parabolic problems
    Du Qiang
    Ming PingBing
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (08): : 1415 - 1439
  • [3] Cascadic multigrid methods for parabolic pressure problems
    Shi, ZC
    Xu, XJ
    NUMERICAL TREATMENT OF MULTIPHASE FLOWS IN POROUS MEDIA, 2000, 552 : 292 - 298
  • [4] Cascadic multigrid for parabolic problems
    Shi, ZC
    Xu, XJ
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2000, 18 (05) : 551 - 560
  • [6] Cascadic multigrid for finite volume methods for elliptic problems
    Shi, ZC
    Xu, XJ
    Man, HY
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2004, 22 (06) : 905 - 920
  • [7] Cascadic multigrid methods
    Bornemann, FA
    Deuflhard, P
    DOMAIN DECOMPOSITION METHODS IN SCIENCES AND ENGINEERING, 1997, : 205 - 212
  • [8] ON MULTIGRID METHODS FOR PARABOLIC PROBLEMS
    LARSSON, S
    THOMEE, V
    ZHOU, SZ
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1995, 13 (03) : 193 - 205
  • [9] The cascadic multigrid method for elliptic problems
    Bornemann, FA
    Deuflhard, P
    NUMERISCHE MATHEMATIK, 1996, 75 (02) : 135 - 152
  • [10] A cascadic multigrid algorithm for semilinear elliptic problems
    Timmermann, G
    NUMERISCHE MATHEMATIK, 2000, 86 (04) : 717 - 731