New characterizations of Hajlasz-Sobolev spaces on metric spaces

被引:0
|
作者
杨大春
机构
[1] Department of Mathematics Beijing Normal University
[2] Beijing
关键词
D O I
暂无
中图分类号
O177.1 [希尔伯特空间及其线性算子理论];
学科分类号
摘要
<正> This paper introduces the fractional Sobolev spaces on spaces of homogeneous type,includingmetric spaces and fractals. These Sobolev spaces include the well-known Hajfasz-Sobolev spaces as specialmodels.The author establishes varions chaaracterizations of(sharp)maximal functions for these spaces.Asapplications,the author identifies the fractional Sobolev spaces with some Lipscitz-type spaces.Moreover;some embedding theorems are also given.
引用
收藏
页码:675 / 689
页数:15
相关论文
共 50 条
  • [11] The grand Lusin-area characterization of Hajlasz-Sobolev spaces and Triebel-Lizorkin spaces
    Jiang, Xiaojuan
    Yang, Dachun
    Yuan, Wen
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (07) : 691 - 711
  • [12] New characterizations of Hajłasz-Sobolev spaces on metric spaces
    Dachun Yang
    Science in China Series A: Mathematics, 2003, 46 : 675 - 689
  • [13] Characterizations of Sobolev inequalities on metric spaces
    Kinnunen, Juha
    Korte, Riikka
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) : 1093 - 1104
  • [14] Fractional Hajlasz-Morrey-Sobolev spaces on quasi-metric measure spaces
    Yuan, Wen
    Lu, Yufeng
    Yang, Dachun
    STUDIA MATHEMATICA, 2015, 226 (02) : 95 - 122
  • [15] Hajlasz-Sobolev imbedding and extension
    Zhou, Yuan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (02) : 577 - 593
  • [16] An integral characterization of Hajlasz-Sobolev space
    Troyanov, M
    Gol'dshtein, V
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (05): : 445 - 450
  • [17] A characterization of Hajlasz-Sobolev and Triebel-Lizorkin spaces via grand Littlewood-Paley functions
    Koskela, Pekka
    Yang, Dachun
    Zhou, Yuan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (08) : 2637 - 2661
  • [18] Some new characterizations of Sobolev spaces
    Nguyen, HM
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 237 (02) : 689 - 720
  • [19] New characterizations of magnetic Sobolev spaces
    Hoai-Minh Nguyen
    Pinamonti, Andrea
    Squassina, Marco
    Vecchi, Eugenio
    ADVANCES IN NONLINEAR ANALYSIS, 2018, 7 (02) : 227 - 245
  • [20] A new approach to Sobolev spaces in metric measure spaces
    Sjodin, Tomas
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 142 : 194 - 237