The structure of weak Pareto solution sets in piecewise linear multiobjective optimization in normed spaces

被引:0
|
作者
ZHENG XiYin1 & YANG XiaoQi2 1 Department of Mathematics
机构
基金
中国国家自然科学基金;
关键词
piecewise linear function; weak Pareto solution; connectedness; normed space;
D O I
暂无
中图分类号
O221.6 [多目标规划];
学科分类号
070105 ; 1201 ;
摘要
In general normed spaces,we consider a multiobjective piecewise linear optimization problem with the ordering cone being convex and having a nonempty interior.We establish that the weak Pareto optimal solution set of such a problem is the union of finitely many polyhedra and that this set is also arcwise connected under the cone convexity assumption of the objective function.Moreover,we provide necessary and suffcient conditions about the existence of weak(sharp) Pareto solutions.
引用
收藏
页码:1243 / 1256
页数:14
相关论文
共 50 条
  • [31] Equivalence of Weak Pareto Optima for Multiobjective Optimization Problems with Cone Constrains
    Mei, Cao
    Xue, Zhao
    [J]. FIFTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2013), 2013, 8878
  • [32] SOLUTION OF LINEAR EQUATIONS IN NORMED SPACES BY AVERAGING ITERATION
    KOLIHA, JJ
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1974, 5 (02) : 178 - 186
  • [33] MMOGA for Solving Multimodal Multiobjective Optimization Problems with Local Pareto Sets
    Yue, C. T.
    Liang, J. J.
    Suganthan, P. N.
    Qu, B. Y.
    Yu, K. J.
    Liu, S.
    [J]. 2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [34] LINEAR MULTIOBJECTIVE MAXMIN OPTIMIZATION AND SOME PARETO AND LEXMAXMIN EXTENSIONS
    BEHRINGER, FA
    [J]. OR SPEKTRUM, 1986, 8 (01): : 25 - 32
  • [35] WEAK AND NORM CONTINUITY OF SEMIGROUP ACTIONS ON NORMED LINEAR-SPACES
    DZINOTYIWEYI, HAM
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1982, 33 (129): : 85 - 90
  • [36] Strong CHIP for infinite systems of convex sets in normed linear spaces
    Hu, Hui
    Wang, Qing
    [J]. OPTIMIZATION, 2010, 59 (02) : 235 - 251
  • [37] PROXIMAL POINTS OF ARBITRARY SETS IN NORMED LINEAR SPACES - PRELIMINARY REPORT
    PAI, DV
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (04): : A515 - &
  • [38] ON TSCHEBYSCHEFF COMPACT AND WEAKLY COMPACT-SETS IN LINEAR NORMED SPACES
    TSARKOV, IG
    [J]. DOKLADY AKADEMII NAUK SSSR, 1988, 300 (01): : 41 - 42
  • [39] Some Properties of Fuzzy Bounded Sets in Fuzzy Normed Linear Spaces
    Szabo, Alexandru
    Binzar, Tudor
    Nadaban, Sorin
    Pater, Flavius
    [J]. INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978