TSK: A Trustworthy Semantic Keypoint Detector for Remote Sensing Images

被引:2
|
作者
Cao, Jingyi [1 ]
You, Yanan [1 ]
Li, Chao [1 ]
Liu, Jun [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; feature interpretability; image registration; keypoint detection; remote sensing; DESCRIPTORS;
D O I
10.1109/TGRS.2024.3352899
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Keypoint detection aims to automatically locate the most significant and informative points in remote sensing images (RSIs), which directly affects the accuracy of matching and registration. In contrast to the handcrafted keypoint detectors that heavily rely on the morphological gradient of corner, line, and ridge, the learning-based detectors emphasize obtaining reliable keypoints from deep features. However, the limited accuracy of semantics undermines the reliability of keypoints, especially in challenging scenarios characterized by repeated textures and boundaries. Therefore, a novel trustworthy semantic keypoint (TSK) detector is proposed for RSIs. It utilizes a lightweight multiscale feature extraction and fusion network, along with a saliency keypoint localization mechanism, to facilitate keypoint detection. Notably, the TSK detector employed explicit semantics, which is refined with multiple learning strategies about repeatability and representability across the multigranularity reasoning spaces, namely, pixel window, neighbor window, and existence entity. Finally, several metrics about repeatability, matching, and registration are used to evaluate the performance of the TSK detector and other competitive methods. Four RSI datasets, including MICGE, HRSCD, OSCD, and SZTAKI, are used to verify performances. TSK detector achieves competitive performance against existing methods.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [31] Graph of Visual Words for Semantic Annotation of Remote Sensing Images
    Farah, Mohamed
    Amiri, Khitem
    Farah, Imed Riadh
    2016 2ND INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP), 2016, : 606 - 612
  • [32] MSNet: multispectral semantic segmentation network for remote sensing images
    Tao, Chongxin
    Meng, Yizhuo
    Li, Junjie
    Yang, Beibei
    Hu, Fengmin
    Li, Yuanxi
    Cui, Changlu
    Zhang, Wen
    GISCIENCE & REMOTE SENSING, 2022, 59 (01) : 1177 - 1198
  • [33] Dynamic Sensing and Correlation Loss Detector for Small Object Detection in Remote Sensing Images
    Shen, Chongchong
    Qian, Jiangbo
    Wang, Chong
    Yan, Diqun
    Zhong, Caiming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 12
  • [34] Multilevel Feature Interaction Network for Remote Sensing Images Semantic Segmentation
    Chen, Hongkun
    Luo, Huilan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 19831 - 19852
  • [35] Semantic Segmentation of Remote Sensing Images Using Multiscale Decoding Network
    Zhang, Xiaoqin
    Xiao, Zhiheng
    Li, Dongyang
    Fan, Mingyu
    Zhao, Li
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (09) : 1492 - 1496
  • [36] GapLoss: A Loss Function for Semantic Segmentation of Roads in Remote Sensing Images
    Yuan, Wei
    Xu, Wenbo
    REMOTE SENSING, 2022, 14 (10)
  • [37] An Enhanced Loss Function for Semantic Road Segmentation in Remote Sensing Images
    Nanni, Loris
    Brahnam, Sheryl
    Loreggia, Andrea
    IEEE ACCESS, 2024, 12 : 74218 - 74229
  • [38] Convolutional Neural Networks for Semantic Segmentation of Multispectral Remote Sensing Images
    Lopez, Josue
    Santos, Stewart
    Atzberger, Clement
    Torres, Deni
    2018 IEEE 10TH LATIN-AMERICAN CONFERENCE ON COMMUNICATIONS (IEEE LATINCOM), 2018,
  • [39] Hidden Path Selection Network for Semantic Segmentation of Remote Sensing Images
    Yang, Kunping
    Tong, Xin-Yi
    Xia, Gui-Song
    Shen, Weiming
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [40] EVALUATING THE MEASUREMENT SCALES OF SEMANTIC FEATURES FOR REMOTE SENSING IMAGES RETRIEVAL
    Gao, Changxin
    Sang, Nong
    Tang, Qiling
    2010 CANADIAN GEOMATICS CONFERENCE AND SYMPOSIUM OF COMMISSION I, ISPRS CONVERGENCE IN GEOMATICS - SHAPING CANADA'S COMPETITIVE LANDSCAPE, 2010, 38