Ground-motion simulations of a listric normal fault for probabilistic seismic hazard analysis

被引:0
|
作者
Yen Y.-T. [1 ]
Hsieh M.-C. [1 ]
Lin P.-S. [1 ]
Hsieh P.-S. [1 ]
机构
[1] Sinotech Engineering Consultants, Inc., Taipei
来源
Journal of GeoEngineering | 2019年 / 14卷 / 02期
关键词
Ground motion prediction equation; Ground motion simulation; Listric normal fault; Probabilistic seismic hazard analysis;
D O I
10.6310/jog.201906_14(2).3
中图分类号
学科分类号
摘要
In general, in probabilistic seismic hazard analysis, the ground motion prediction equation (GMPE) is suitable for evaluating ground motions from fault sources with a single dipping angle. However, for the complex fault rupture cases of listric faults that have two or more dipping angles, it is difficult to use the GMPE for seismic hazard analysis because of the nature of its functional form. The overall characteristics of ground motion at a specific site of interest need to be determined through multiple earthquake scenarios via ground motion simulations. Therefore, it is necessary to compare ground motions from GMPE prediction and simulated data in order to set the GMPE for use in seismic hazard analysis. In this study, we employ a ground-motion simulation to evaluate GMPE input parameters for listric normal fault cases. We show that quantitatively comparing ground motions from GMPE prediction and simulated data is a feasible method for defining input parameters for the GMPE in seismic hazard analysis. © 2019 Taiwan Geotechnical Society.
引用
收藏
页码:77 / 84
页数:7
相关论文
共 50 条
  • [31] Spatial Distribution of Ground-Motion Variability in Broadband Ground-Motion Simulations
    Iwaki, Asako
    Morikawa, Nobuyuki
    Maeda, Takahiro
    Fujiwara, Hiroyuki
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2017, 107 (06) : 2963 - 2979
  • [32] Maximum ground surface motion in probabilistic seismic hazard analyses
    Pecker, A
    JOURNAL OF EARTHQUAKE ENGINEERING, 2005, 9 : 187 - 211
  • [33] Stochastic Ground-Motion Simulation of the 2021 Mw 5.9 Woods Point Earthquake: Facilitating Local Probabilistic Seismic Hazard Analysis in Australia
    Tang, Yuxiang
    Mai, P. Martin
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2023, 113 (05) : 2119 - 2143
  • [34] Variability and Uncertainty in Empirical Ground-Motion Prediction for Probabilistic Hazard and Risk Analyses
    Stafford, Peter J.
    PERSPECTIVES ON EUROPEAN EARTHQUAKE ENGINEERING AND SEISMOLOGY, VOL 2, 2015, 39 : 97 - 128
  • [35] A Ground-Motion Logic-Tree Scheme for Regional Seismic Hazard Studies
    Kale, Ozkan
    Akkar, Sinan
    EARTHQUAKE SPECTRA, 2017, 33 (03) : 837 - 856
  • [36] Orientation-dependent ground-motion measure for seismic-hazard assessment
    Hong, H. P.
    Goda, K.
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2007, 97 (05) : 1525 - 1538
  • [37] The 2023 US National Seismic Hazard Model: Subduction ground-motion models
    Rezaeian, Sanaz
    Powers, Peter M.
    Altekruse, Jason
    Ahdi, Sean K.
    Petersen, Mark D.
    Shumway, Allison M.
    Frankel, Arthur D.
    Wirth, Erin A.
    Smith, James A.
    Moschetti, Morgan P.
    Withers, Kyle B.
    Herrick, Julie A.
    EARTHQUAKE SPECTRA, 2024, 40 (03) : 1739 - 1786
  • [38] Treatment of ground-motion predictive relationships for the reference seismic hazard map of Italy
    Valentina Montaldo
    Ezio Faccioli
    Gaetano Zonno
    Aybige Akinci
    Luca Malagnini
    Journal of Seismology, 2005, 9 : 295 - 316
  • [39] Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations
    P. Martin Mai
    Martin Galis
    Kiran K. S. Thingbaijam
    Jagdish C. Vyas
    Eric M. Dunham
    Pure and Applied Geophysics, 2017, 174 (9) : 3419 - 3450
  • [40] Treatment of ground-motion predictive relationships for the reference seismic hazard map of Italy
    Montaldo, V
    Faccioli, E
    Zonno, G
    Akinci, A
    Malagnini, L
    JOURNAL OF SEISMOLOGY, 2005, 9 (03) : 295 - 316