Self-supervised monocular depth estimation on water scenes via specular reflection prior

被引:7
|
作者
Lu, Zhengyang [1 ]
Chen, Ying [1 ]
机构
[1] Jiangnan Univ, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Monocular depth estimation; Self-supervision; Re-projection error; Specular reflection;
D O I
10.1016/j.dsp.2024.104496
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Monocular depth estimation from a single image is an ill -posed problem for computer vision due to insufficient reliable cues as the prior knowledge. Besides the inter -frame supervision, namely stereo and adjacent frames, extensive prior information is available in the same frame. Reflections from specular surfaces, informative intraframe priors, enable us to reformulate the ill -posed depth estimation task as a multi -view synthesis. This paper proposes the first self -supervision for deep -learning depth estimation on water scenes via intra-frame priors, known as reflection supervision and geometrical constraints. In the first stage, a water segmentation network is performed to separate the reflection components from the entire image. Next, we construct a self -supervised framework to predict the target appearance from reflections, perceived as other perspectives. The photometric reprojection error, incorporating SmoothL1 and a novel photometric adaptive SSIM, is formulated to optimize pose and depth estimation by aligning the transformed virtual depths and source ones. As a supplement, the water surface is determined from real and virtual camera positions, which complement the depth of the water area. Furthermore, to alleviate these laborious ground truth annotations, we introduce a large-scale water reflection scene (WRS) dataset rendered from Unreal Engine 4. Extensive experiments on the WRS dataset prove the feasibility of the proposed method compared to state-of-the-art depth estimation techniques.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Frequency-Aware Self-Supervised Monocular Depth Estimation
    Chen, Xingyu
    Li, Thomas H.
    Zhang, Ruonan
    Li, Ge
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5797 - 5806
  • [42] SPDepth: Enhancing Self-Supervised Indoor Monocular Depth Estimation via Self-Propagation
    Guo, Xiaotong
    Zhao, Huijie
    Shao, Shuwei
    Li, Xudong
    Zhang, Baochang
    Li, Na
    FUTURE INTERNET, 2024, 16 (10)
  • [43] Self-Supervised Scale Recovery for Monocular Depth and Egomotion Estimation
    Wagstaff, Brandon
    Kelly, Jonathan
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 2620 - 2627
  • [44] Graph semantic information for self-supervised monocular depth estimation
    Zhang, Dongdong
    Wang, Chunping
    Wang, Huiying
    Fu, Qiang
    PATTERN RECOGNITION, 2024, 156
  • [45] Image Masking for Robust Self-Supervised Monocular Depth Estimation
    Chawla, Hemang
    Jeeveswaran, Kishaan
    Arani, Elahe
    Zonooz, Bahram
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 10054 - 10060
  • [46] Self-Supervised Monocular Depth Estimation by Digging into Uncertainty Quantification
    Yuan-Zhen Li
    Sheng-Jie Zheng
    Zi-Xin Tan
    Tuo Cao
    Fei Luo
    Chun-Xia Xiao
    Journal of Computer Science and Technology, 2023, 38 : 510 - 525
  • [47] Exploring the vulnerability of self-supervised monocular depth estimation models
    Hou, Ruitao
    Mo, Kanghua
    Long, Yucheng
    Li, Ning
    Rao, Yuan
    INFORMATION SCIENCES, 2024, 677
  • [48] Self-Supervised Monocular Depth Estimation Based on Channel Attention
    Tao, Bo
    Chen, Xinbo
    Tong, Xiliang
    Jiang, Du
    Chen, Baojia
    PHOTONICS, 2022, 9 (06)
  • [49] Deep Digging into the Generalization of Self-Supervised Monocular Depth Estimation
    Bae, Jinwoo
    Moon, Sungho
    Im, Sunghoon
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 187 - 196
  • [50] Self-Supervised Human Depth Estimation from Monocular Videos
    Tan, Feitong
    Zhu, Hao
    Cui, Zhaopeng
    Zhu, Siyu
    Pollefeys, Marc
    Tan, Ping
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 647 - 656