A Review of deep learning methods for denoising of medical low-dose CT images

被引:0
|
作者
Zhang, Ju [1 ]
Gong, Weiwei [2 ]
Ye, Lieli [1 ]
Wang, Fanghong [3 ]
Shangguan, Zhibo [2 ]
Cheng, Yun [4 ]
机构
[1] College of Information Science and Technology, Hangzhou Normal University, Hangzhou, China
[2] College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
[3] Zhijiang College, Zhejiang University of Technology, Shaoxing, China
[4] Department of Medical Imaging, Zhejiang Hospital, Hangzhou, China
基金
中国国家自然科学基金;
关键词
Computerized tomography - Decoding - Deep learning - Image reconstruction - Learning systems - Medical imaging - Signal encoding;
D O I
暂无
中图分类号
学科分类号
摘要
To prevent patients from being exposed to excess of radiation in CT imaging, the most common solution is to decrease the radiation dose by reducing the X-ray, and thus the quality of the resulting low-dose CT images (LDCT) is degraded, as evidenced by more noise and streaking artifacts. Therefore, it is important to maintain high quality CT image while effectively reducing radiation dose. In recent years, with the rapid development of deep learning technology, deep learning-based LDCT denoising methods have become quite popular because of their data-driven and high-performance features to achieve excellent denoising results. However, to our knowledge, no relevant article has so far comprehensively introduced and reviewed advanced deep learning denoising methods such as Transformer structures in LDCT denoising tasks. Therefore, based on the literatures related to LDCT image denoising published from year 2016–2023, and in particular from 2020 to 2023, this study presents a systematic survey of current situation, and challenges and future research directions in LDCT image denoising field. Four types of denoising networks are classified according to the network structure: CNN-based, Encoder-Decoder-based, GAN-based, and Transformer-based denoising networks, and each type of denoising network is described and summarized from the perspectives of structural features and denoising performances. Representative deep-learning denoising methods for LDCT are experimentally compared and analyzed. The study results show that CNN-based denoising methods capture image details efficiently through multi-level convolution operation, demonstrating superior denoising effects and adaptivity. Encoder-decoder networks with MSE loss, achieve outstanding results in objective metrics. GANs based methods, employing innovative generators and discriminators, obtain denoised images that exhibit perceptually a closeness to NDCT. Transformer-based methods have potential for improving denoising performances due to their powerful capability in capturing global information. Challenges and opportunities for deep learning based LDCT denoising are analyzed, and future directions are also presented. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [41] Low-dose CT denoising via CNN trained using images with activation map
    Han, Minah
    Baek, Jongduk
    MEDICAL IMAGING 2022: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT, 2022, 12035
  • [42] SwinCT: feature enhancement based low-dose CT images denoising with swin transformer
    Jian, Muwei
    Yu, Xiaoyang
    Zhang, Haoran
    Yang, Chengdong
    MULTIMEDIA SYSTEMS, 2024, 30 (01)
  • [43] Low-Dose CT Image Reconstruction With a Deep Learning Prior
    Park, Hyoung Suk
    Kim, Kyungsang
    Jeon, Kiwan
    IEEE ACCESS, 2020, 8 : 158647 - 158655
  • [44] Medical low-dose CT image denoising based on variable order variational model
    Wang N.
    Zhang Q.
    Liu Y.
    Jia L.
    Gui Z.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2019, 45 (09): : 1757 - 1764
  • [45] Low-dose CT Denoising with Dilated Residual Network
    Gholizadeh-Ansari, Maryam
    Alirezaie, Javad
    Babyn, Paul
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 5117 - 5120
  • [46] Transformer With Double Enhancement for Low-Dose CT Denoising
    Li, Haoran
    Yang, Xiaomin
    Yang, Sihan
    Wang, Daoyong
    Jeon, Gwanggil
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (10) : 4660 - 4671
  • [47] Decomposition iteration strategy for low-dose CT denoising
    Li, Zhiyuan
    Liu, Yi
    Zhang, Pengcheng
    Lu, Jing
    Gui, Zhiguo
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2024, 32 (03) : 493 - 512
  • [48] NO-REFERENCE DENOISING OF LOW-DOSE CT PROJECTIONS
    Zainulina, Elvira
    Chernyavskiy, Alexey
    Dylov, Dmitry, V
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 77 - 81
  • [49] LOW-DOSE CT DENOISING WITH CONVOLUTIONAL NEUELA NETWORK
    Chen, Hu
    Zhang, Yi
    Zhang, Weihua
    Liao, Peixi
    Li, Ke
    Zhou, Jiliu
    Wang, Ge
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 143 - 146
  • [50] Irregular feature enhancer for low-dose CT denoising
    Deng, Jiehang
    Hu, Zihang
    He, Jinwen
    Liu, Jiaxin
    Qiao, Guoqing
    Gu, Guosheng
    Weng, Shaowei
    MULTIMEDIA SYSTEMS, 2024, 30 (06)