Improved multi-strategy artificial rabbits optimization for solving global optimization problems

被引:1
|
作者
Wang, Ruitong [1 ]
Zhang, Shuishan [1 ]
Jin, Bo [2 ]
机构
[1] Dalian Univ Technol, Leicester Inst, Dalian 124221, Peoples R China
[2] Univ Coimbra, Dept Elect & Comp Engn DEEC, Inst Syst & Robot ISR, P-3030290 Coimbra, Portugal
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Artificial rabbit optimization; Roulette fitness distance balanced hiding strategy; Non-monopoly search strategy; Covariance restart strategy; CEC2014; CEC2017; CEC2022; LEARNING-BASED OPTIMIZATION; ALGORITHM; EVOLUTION;
D O I
10.1038/s41598-024-69010-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Artificial rabbits optimization (ARO) is a metaheuristic algorithm based on the survival strategy of rabbits proposed in 2022. ARO has favorable optimization performance, but it still has some shortcomings, such as weak exploitation capacity, easy to fall into local optima, and serious decline of population diversity at the later stage. In order to solve these problems, we propose an improved multi-strategy artificial rabbits optimization, called IMARO, based on ARO algorithm. In this paper, a roulette fitness distance balanced hiding strategy is proposed so that rabbits can find better locations to hide more reasonably. Meanwhile, in order to improve the deficiency of ARO which is easy to fall into local optimum, an improved non-monopoly search strategy based on Gaussian and Cauchy operators is designed to improve the ability of the algorithm to obtain the global optimal solution. Finally, a covariance restart strategy is designed to improve population diversity when the exploitation is stagnant and to improve the convergence accuracy and convergence speed of ARO. The performance of IMARO is verified by comparing original ARO algorithm with six basic algorithms and seven improved algorithms. The results of CEC2014, CEC2017, CEC2022 show that IMARO has a good exploitation and exploration ability and can effectively get rid of local optimum. Moreover, IMARO produces optimal results on six real-world engineering problems, further demonstrating its efficiency in solving real-world optimization challenges.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] A multi-strategy enhanced reptile search algorithm for global optimization and engineering optimization design problems
    Zhou, Liping
    Liu, Xu
    Tian, Ruiqing
    Wang, Wuqi
    Jin, Guowei
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (02):
  • [32] A multi-strategy enhanced northern goshawk optimization algorithm for global optimization and engineering design problems
    Li, Ke
    Huang, Haisong
    Fu, Shengwei
    Ma, Chi
    Fan, Qingsong
    Zhu, Yunwei
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 415
  • [33] A multi-strategy improved tree-seed algorithm for numerical optimization and engineering optimization problems
    Liu, Jingsen
    Hou, Yanlin
    Li, Yu
    Zhou, Huan
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [34] Enhancing sand cat swarm optimization based on multi-strategy mixing for solving engineering optimization problems
    Wang, Wen-chuan
    Han, Zi-jun
    Zhang, Zhao
    Wang, Jun
    EVOLUTIONARY INTELLIGENCE, 2025, 18 (01)
  • [35] Improved sparrow search algorithm with adaptive multi-strategy hierarchical mechanism for global optimization and engineering problems
    Wei, Fengtao
    Feng, Yue
    Shi, Xin
    Hou, Kai
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (03):
  • [36] A multi-strategy improved beluga whale optimization algorithm for constrained engineering problems
    Chen, Xinyi
    Zhang, Mengjian
    Yang, Ming
    Wang, Deguang
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (10): : 14685 - 14727
  • [37] MSI-HHO: Multi-Strategy Improved HHO Algorithm for Global Optimization
    Wang, Haosen
    Tang, Jun
    Pan, Qingtao
    MATHEMATICS, 2024, 12 (03)
  • [38] Improved Multi-Strategy Harris Hawks Optimization and Its Application in Engineering Problems
    Tian, Fulin
    Wang, Jiayang
    Chu, Fei
    MATHEMATICS, 2023, 11 (06)
  • [39] A Multi-Strategy Improved Northern Goshawk Optimization Algorithm for Optimizing Engineering Problems
    Liu, Haijun
    Xiao, Jian
    Yao, Yuan
    Zhu, Shiyi
    Chen, Yi
    Zhou, Rui
    Ma, Yan
    Wang, Maofa
    Zhang, Kunpeng
    BIOMIMETICS, 2024, 9 (09)
  • [40] Enhanced Harris hawks optimization with multi-strategy for global optimization tasks
    Li, ChenYang
    Li, Jun
    Chen, HuiLing
    Jin, Ming
    Ren, Hao
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185