Improved multi-strategy artificial rabbits optimization for solving global optimization problems

被引:1
|
作者
Wang, Ruitong [1 ]
Zhang, Shuishan [1 ]
Jin, Bo [2 ]
机构
[1] Dalian Univ Technol, Leicester Inst, Dalian 124221, Peoples R China
[2] Univ Coimbra, Dept Elect & Comp Engn DEEC, Inst Syst & Robot ISR, P-3030290 Coimbra, Portugal
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Artificial rabbit optimization; Roulette fitness distance balanced hiding strategy; Non-monopoly search strategy; Covariance restart strategy; CEC2014; CEC2017; CEC2022; LEARNING-BASED OPTIMIZATION; ALGORITHM; EVOLUTION;
D O I
10.1038/s41598-024-69010-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Artificial rabbits optimization (ARO) is a metaheuristic algorithm based on the survival strategy of rabbits proposed in 2022. ARO has favorable optimization performance, but it still has some shortcomings, such as weak exploitation capacity, easy to fall into local optima, and serious decline of population diversity at the later stage. In order to solve these problems, we propose an improved multi-strategy artificial rabbits optimization, called IMARO, based on ARO algorithm. In this paper, a roulette fitness distance balanced hiding strategy is proposed so that rabbits can find better locations to hide more reasonably. Meanwhile, in order to improve the deficiency of ARO which is easy to fall into local optimum, an improved non-monopoly search strategy based on Gaussian and Cauchy operators is designed to improve the ability of the algorithm to obtain the global optimal solution. Finally, a covariance restart strategy is designed to improve population diversity when the exploitation is stagnant and to improve the convergence accuracy and convergence speed of ARO. The performance of IMARO is verified by comparing original ARO algorithm with six basic algorithms and seven improved algorithms. The results of CEC2014, CEC2017, CEC2022 show that IMARO has a good exploitation and exploration ability and can effectively get rid of local optimum. Moreover, IMARO produces optimal results on six real-world engineering problems, further demonstrating its efficiency in solving real-world optimization challenges.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] MEARO: A multi-strategy enhanced artificial rabbits optimization for global optimization problems
    Liao, Zhilin
    Lu, Zengtong
    Cai, Xinyu
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (04):
  • [2] A multi-strategy improved Coati optimization algorithm for solving global optimization problems
    Luo, Xin
    Yuan, Yage
    Fu, Youfa
    Huang, Haisong
    Wei, Jianan
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (04):
  • [3] A Multi-strategy Improved Grasshopper Optimization Algorithm for Solving Global Optimization and Engineering Problems
    Liu, Wei
    Yan, Wenlv
    Li, Tong
    Han, Guangyu
    Ren, Tengteng
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [4] An improved multi-strategy beluga whale optimization for global optimization problems
    Chen, Hongmin
    Wang, Zhuo
    Wu, Di
    Jia, Heming
    Wen, Changsheng
    Rao, Honghua
    Abualigah, Laith
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (07) : 13267 - 13317
  • [5] Improved Multi-Strategy Sand Cat Swarm Optimization for Solving Global Optimization
    Zhang, Kuan
    He, Yirui
    Wang, Yuhang
    Sun, Changjian
    BIOMIMETICS, 2024, 9 (05)
  • [6] An Improved Multi-Strategy Crayfish Optimization Algorithm for Solving Numerical Optimization Problems
    Wang, Ruitong
    Zhang, Shuishan
    Zou, Guangyu
    BIOMIMETICS, 2024, 9 (06)
  • [7] Multi-strategy enhanced artificial rabbit optimization algorithm for solving engineering optimization problems
    He, Ni-ni
    Wang, Wen-chuan
    Wang, Jun
    EVOLUTIONARY INTELLIGENCE, 2025, 18 (01)
  • [8] A Multi-strategy Slime Mould Algorithm for Solving Global Optimization and Engineering Optimization Problems
    Wang, Wen-chuan
    Tao, Wen-hui
    Tian, Wei-can
    Zang, Hong-fei
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (5-6) : 3865 - 3889
  • [9] MICFOA: A Novel Improved Catch Fish Optimization Algorithm with Multi-Strategy for Solving Global Problems
    Fu, Zhihao
    Li, Zhichun
    Li, Yongkang
    Chen, Haoyu
    BIOMIMETICS, 2024, 9 (09)
  • [10] An Improved Golden Jackal Optimization Algorithm Based on Multi-strategy Mixing for Solving Engineering Optimization Problems
    Wang, Jun
    Wang, Wen-chuan
    Chau, Kwok-wing
    Qiu, Lin
    Hu, Xiao-xue
    Zang, Hong-fei
    Xu, Dong-mei
    JOURNAL OF BIONIC ENGINEERING, 2024, 21 (02) : 1092 - 1115