Interlayer mechanical performance of 3D-printed cementitious systems: A comprehensive study on operational and material parameters

被引:3
|
作者
Ilcan, Hueseyin [1 ,2 ]
Ozkilic, Hamza [1 ]
Tugluca, Merve Soenmez [1 ,2 ]
Sahmaran, Mustafa [2 ]
机构
[1] Hacettepe Univ, Inst Sci, Beytepe, Ankara, Turkiye
[2] Hacettepe Univ, Dept Civil Engn, Beytepe, Ankara, Turkiye
关键词
3D printing; Interlayer mechanical performance; Material age; Printing time interval; Anisotropy; Bond strength; 3D PRINTED CONCRETE; HARDENED PROPERTIES; BOND STRENGTH; EXTRUSION; GEOPOLYMER; DESIGN; FRESH;
D O I
10.1016/j.conbuildmat.2024.135463
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study delves into the interlayer mechanical performance of 3D -printed cementitious materials, exploring a variety of operational and material parameters to understand the practical effects on the performance of printed structures. To achieve this, a comprehensive battery of tests, encompassing compression, triplet shear, direct tensile, and diagonal tension tests, was conducted. Within the scope of this investigation, the anisotropic performance in perpendicular, lateral, and parallel directions was examined, along with varying printing time intervals (0, 15, 30, and 60 min between consecutive layers), material aging times (0, 30, and 60 min), and different manufacturing methodologies, including cast, horizontal -printed, and vertical -printed specimens. The research findings indicate that well -established mechanical tests, commonly utilized for evaluating masonry structures, can be effectively transferred and applied to assess 3D printed structures. A noteworthy discovery is the anisotropic behavior observed in compressive strength, characterized by diminishing results from perpendicular to parallel and parallel to lateral loading directions. Extended printing time intervals have an adverse impact on the interlayer mechanical performance of cementitious systems. Material aging time also significantly influences bond strength, particularly in mixtures aged for 60 min. In conclusion, it is evident that material aging exerts a more substantial influence on bond strength compared to printing time intervals in cementitious systems. Additionally, it was observed that vertically printed specimens replicate the mechanical performance and fracture mechanism of cast specimens, while horizontally printed specimens exhibit slightly lower performance with distinct fracture patterns.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Material Characterization of 3D-printed Silicone Elastomers
    Miron, Veronika M.
    Laemmermann, Sebastian
    Cakmak, Umut
    Major, Zoltan
    SECOND EUROPEAN CONFERENCE ON THE STRUCTURAL INTEGRITY OF ADDITIVELY MANUFACTURED MATERIALS, 2021, 34 : 65 - 70
  • [42] Influence of processing parameters on mechanical properties of a 3D-printed trabecular bone microstructure
    Amini, Morteza
    Reisinger, Andreas
    Pahr, Dieter H.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2020, 108 (01) : 38 - 47
  • [43] MATERIAL BEHAVIOURS IN 3D-PRINTED FASHION ITEMS
    Farahi, Behnaz
    ARCHITECTURAL DESIGN, 2017, 87 (06) : 84 - 91
  • [44] Effects of heat treatment on the mechanical properties of 3D-printed polylactic acid: Study of competition between crystallization and interlayer bonding
    Ghasemkhani, Ali
    Pircheraghi, Gholamreza
    Mehrabadi, Nima Rashidi
    Eshraghi, Asma
    MATERIALS TODAY COMMUNICATIONS, 2024, 39
  • [45] Mechanical properties of 3D-printed blood vessels
    Wang, Jiyan
    Krishnamoorthy, Srikumar
    Song, Hongtao
    Ma, Changhong
    DYNA, 2020, 95 (05): : 541 - 545
  • [46] Improving the Mechanical Properties of 3D-Printed Metal
    Kabaldin Y.G.
    Anosov M.S.
    Kolchin P.V.
    Shatagin D.A.
    Russian Engineering Research, 2023, 43 (08) : 976 - 979
  • [47] O Mechanical characterization of 3D-printed polymers
    Dizon, John Ryan C.
    Espera, Alejandro H., Jr.
    Chen, Qiyi
    Advincula, Rigoberto C.
    ADDITIVE MANUFACTURING, 2018, 20 : 44 - 67
  • [48] Evaluation of the Mechanical Properties of a 3D-Printed Mortar
    Lee, Hojae
    Kim, Jang-Ho Jay
    Moon, Jae-Heum
    Kim, Won-Woo
    Seo, Eun-A
    MATERIALS, 2019, 12 (24)
  • [49] Evaluation and Correlation Study on Work Performance of 3D-Printed Concrete
    Zhang, Hongping
    Wang, Jianhong
    Liu, Yaling
    Zhang, Xiangshuang
    JOURNAL OF ADVANCED CONCRETE TECHNOLOGY, 2021, 19 (11) : 1181 - 1196
  • [50] Energy Performance of 3D-Printed Concrete Walls: A Numerical Study
    Suntharalingam, Thadshajini
    Upasiri, Irindu
    Gatheeshgar, Perampalam
    Poologanathan, Keerthan
    Nagaratnam, Brabha
    Santos, Paulo
    Rajanayagam, Heshachanaa
    BUILDINGS, 2021, 11 (10)