Alternating block linearized Bregman iterations for regularized nonnegative matrix factorization

被引:0
|
作者
Chen, Beier [1 ]
Zhang, Hui [1 ]
机构
[1] Natl Univ Def Technol, Dept Math, Changsha 410073, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
alternating block; Bregman distance; linearized Bregman iterations; nonnegative matrix factorization; sparse regularization; sufficient descent; LIPSCHITZ GRADIENT CONTINUITY; 1ST-ORDER METHODS; MINIMIZATION; NONCONVEX; ALGORITHMS;
D O I
10.1002/mma.10098
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose an alternating block variant of the linearized Bregman iterations for a class of regularized nonnegative matrix factorization (NMF) problems. The proposed method exploits the block structure of NMF, utilizes the smooth adaptable property of the loss function based on the Bregman distance, and at the same time follows the iterative regularization idea of the linearized Bregman iterations method. Theoretically, we show that the proposed method is a descent method by adjusting the involved parameters. Finally, we end with several illustrative numerical experiments.
引用
下载
收藏
页码:9858 / 9873
页数:16
相关论文
共 50 条
  • [31] Error Graph Regularized Nonnegative Matrix Factorization for Data Representation
    Qiang Zhu
    Meijun Zhou
    Junping Liu
    Neural Processing Letters, 2023, 55 : 7321 - 7335
  • [32] SPATIAL GRAPH REGULARIZED NONNEGATIVE MATRIX FACTORIZATION FOR HYPERSPECTRAL UNMIXING
    Zhang, Hao
    Lei, Lin
    Zhang, Shaoquan
    Huang, Min
    Li, Fan
    Deng, Chengzhi
    Wang, Shengqian
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1624 - 1627
  • [33] Regularized asymmetric nonnegative matrix factorization for clustering in directed networks
    Tosyali, Ali
    Kim, Jinho
    Choi, Jeongsub
    Jeong, Myong K.
    PATTERN RECOGNITION LETTERS, 2019, 125 : 750 - 757
  • [34] Regularized Nonnegative Matrix Factorization with Real Data for Hyperspectral Unmixing
    Sun, Li
    Feng, Wei
    Wang, Jing
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP 2019), 2019, : 717 - 721
  • [35] Scaled Linearized Bregman Iterations for Fixed Point Implementation
    Lunglmayr, Michael
    Hiptmair, Bernhard
    Huemer, Mario
    2017 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2017,
  • [36] Nonnegative matrix factorization and I-divergence alternating minimization
    Finesso, Lorenzo
    Spreij, Peter
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 416 (2-3) : 270 - 287
  • [37] A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization
    Masoud Ahookhosh
    Le Thi Khanh Hien
    Nicolas Gillis
    Panagiotis Patrinos
    Journal of Optimization Theory and Applications, 2021, 190 : 234 - 258
  • [38] A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization
    Ahookhosh, Masoud
    Hien, Le Thi Khanh
    Gillis, Nicolas
    Patrinos, Panagiotis
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 190 (01) : 234 - 258
  • [39] Block kernel nonnegative matrix factorization for face recognition
    Chen, Wen-Sheng
    Liu, Jingmin
    Pan, Binbin
    Li, Yugao
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2019, 17 (01)
  • [40] Adaptive local learning regularized nonnegative matrix factorization for data clustering
    Sheng, Yongpan
    Wang, Meng
    Wu, Tianxing
    Xu, Han
    APPLIED INTELLIGENCE, 2019, 49 (06) : 2151 - 2168