Locally time-varying parameter regression

被引:0
|
作者
He, Zhongfang [1 ]
机构
[1] Royal Bank Canada, Toronto, ON, Canada
关键词
Bayesian shrinkage; economic time series; MCMC; TVP; C11; C22; C25; E37; INTERWEAVING STRATEGY ASIS; STOCHASTIC VOLATILITY; BAYESIAN-INFERENCE; SHRINKAGE; HORSESHOE; SPARSITY;
D O I
10.1080/07474938.2024.2330127
中图分类号
F [经济];
学科分类号
02 ;
摘要
I discuss a framework to allow dynamic sparsity in time-varying parameter regression models. The conditional variances of the innovations of time-varying parameters are time varying and equal to zero adaptively via thresholding. The resulting model allows the dynamics of the time-varying parameters to mix over different frequencies of parameter changes in a data driven way and permits great flexibility while achieving model parsimony. A convenient strategy is discussed to infer if each coefficient is static or dynamic and, if dynamic, how frequent the parameter change is. An MCMC scheme is developed for model estimation. The performance of the proposed approach is illustrated in studies of both simulated and real economic data.
引用
收藏
页码:269 / 300
页数:32
相关论文
共 50 条