INFERENCE OF TIME-VARYING REGRESSION MODELS

被引:57
|
作者
Zhang, Ting [1 ]
Wu, Wei Biao [2 ]
机构
[1] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
[2] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
来源
ANNALS OF STATISTICS | 2012年 / 40卷 / 03期
基金
美国国家科学基金会;
关键词
Information criterion; locally stationary processes; nonparametric hypothesis testings; time-varying coefficient models; variable selection; CONSISTENT COVARIANCE-MATRIX; COEFFICIENT MODELS; LONGITUDINAL DATA; SERIES MODELS; NONPARAMETRIC REGRESSION; AUTOREGRESSIVE PROCESSES; LINEAR-MODELS; STATIONARY-PROCESSES; EFFICIENT ESTIMATION; SPECIFICATION TESTS;
D O I
10.1214/12-AOS1010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider parameter estimation, hypothesis testing and variable selection for partially time-varying coefficient models. Our asymptotic theory has the useful feature that it can allow dependent, nonstationary error and covariate processes. With a two-stage method, the parametric component can be estimated with a n(1/2)-convergence rate. A simulation-assisted hypothesis testing procedure is proposed for testing significance and parameter constancy. We further propose an information criterion that can consistently select the true set of significant predictors. Our method is applied to autoregressive models with time-varying coefficients. Simulation results and a real data application are provided.
引用
收藏
页码:1376 / 1402
页数:27
相关论文
共 50 条
  • [1] Fast and Flexible Bayesian Inference in Time-varying Parameter Regression Models
    Hauzenberger, Niko
    Huber, Florian
    Koop, Gary
    Onorante, Luca
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (04) : 1904 - 1918
  • [2] Simultaneous inference for time-varying models
    Karmakar, Sayar
    Richter, Stefan
    Wu, Wei Biao
    [J]. JOURNAL OF ECONOMETRICS, 2022, 227 (02) : 408 - 428
  • [3] Semiparametric Bayesian inference for time-varying parameter regression models with stochastic volatility
    Dimitrakopoulos, Stefanos
    [J]. ECONOMICS LETTERS, 2017, 150 : 10 - 14
  • [4] Regression models for time-varying extremes
    Lima, Stenio Rodrigues
    do Nascimento, Fernando Ferraz
    da Silva Ferraz, Valmaria Rocha
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (02) : 235 - 249
  • [5] Nonparametric Inference for Time-Varying Coefficient Quantile Regression
    Wu, Weichi
    Zhou, Zhou
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2017, 35 (01) : 98 - 109
  • [6] Estimation and Inference on Time-Varying FAVAR Models
    Fu, Zhonghao
    Su, Liangjun
    Wang, Xia
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (02) : 533 - 547
  • [7] Inference on stochastic time-varying coefficient models
    Giraitis, L.
    Kapetanios, G.
    Yates, T.
    [J]. JOURNAL OF ECONOMETRICS, 2014, 179 (01) : 46 - 65
  • [8] Time-varying sparsity in dynamic regression models
    Kalli, Maria
    Griffin, Jim E.
    [J]. JOURNAL OF ECONOMETRICS, 2014, 178 (02) : 779 - 793
  • [9] TIME-VARYING PARAMETER REGRESSION-MODELS
    BECK, N
    [J]. AMERICAN JOURNAL OF POLITICAL SCIENCE, 1983, 27 (03) : 557 - 600
  • [10] Statistical inference in partially time-varying coefficient models
    Li, Degui
    Chen, Jia
    Lin, Zhengyan
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (02) : 995 - 1013