A theory of optimal convex regularization for low-dimensional recovery

被引:1
|
作者
Traonmilin, Yann [1 ]
Gribonval, Remi [2 ]
Vaiter, Samuel [3 ]
机构
[1] Univ Bordeaux, CNRS, UMR 5251, Bordeaux INP,IMB, F-33400 Talence, France
[2] Univ Lyon, CNRS, ENS Lyon, UCBL,Inria,LIP, F-69342 Lyon, France
[3] Univ Cote Azur, CNRS, LJAD, F-06108 Nice, France
关键词
inverse problems; convex regularization; low-dimensional modeling; sparse recovery; low-rank matrix recovery; HILBERT-SPACES; OPTIMIZATION; DECOMPOSITION; SELECTION; EQUATIONS; BOUNDS;
D O I
10.1093/imaiai/iaae013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of recovering elements of a low-dimensional model from under-determined linear measurements. To perform recovery, we consider the minimization of a convex regularizer subject to a data fit constraint. Given a model, we ask ourselves what is the 'best' convex regularizer to perform its recovery. To answer this question, we define an optimal regularizer as a function that maximizes a compliance measure with respect to the model. We introduce and study several notions of compliance. We give analytical expressions for compliance measures based on the best-known recovery guarantees with the restricted isometry property. These expressions permit to show the optimality of the $\ell <^>{1}$ -norm for sparse recovery and of the nuclear norm for low-rank matrix recovery for these compliance measures. We also investigate the construction of an optimal convex regularizer using the examples of sparsity in levels and of sparse plus low-rank models.
引用
收藏
页数:73
相关论文
共 50 条
  • [41] Low-Dimensional Models for Dimensionality Reduction and Signal Recovery: A Geometric Perspective
    Baraniuk, Richard G.
    Cevher, Volkan
    Wakin, Michael B.
    PROCEEDINGS OF THE IEEE, 2010, 98 (06) : 959 - 971
  • [42] Low-dimensional optics
    Flory, Franois
    Escoubas, Ludovic
    Le Rouzo, Judikael
    Berginc, Gerard
    Lee, Cheng-Chung
    JOURNAL OF NANOPHOTONICS, 2015, 9
  • [43] Low-dimensional perovskites
    Bubnova, Olga
    NATURE NANOTECHNOLOGY, 2018, 13 (07) : 531 - 531
  • [44] Low-dimensional BEC
    Sevilla, FJ
    Grether, M
    Fortes, M
    de Llano, M
    Rojo, O
    Solis, MA
    Valladares, AA
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2000, 121 (5-6) : 281 - 286
  • [45] Low-dimensional BEC
    F. J. Sevilla
    M. Grether
    M. Fortes
    M. de Llano
    O. Rojo
    M. A. Solís
    A. A. Valladares
    Journal of Low Temperature Physics, 2000, 121 : 281 - 286
  • [46] Low-dimensional thermoelectrics
    Balandin, A
    PHYSICS OF LOW-DIMENSIONAL STRUCTURES, 2000, 5-6 : U1 - U1
  • [47] Low-dimensional systems
    Borovitskaya, Elena
    Shur, Michael S.
    International Journal of High Speed Electronics and Systems, 2002, 12 (01) : 1 - 14
  • [48] Low-dimensional perovskites
    Olga Bubnova
    Nature Nanotechnology, 2018, 13 : 531 - 531
  • [49] LOW-DIMENSIONAL SOLIDS
    DAY, P
    CHEMISTRY IN BRITAIN, 1983, 19 (04) : 306 - &
  • [50] Low-dimensional thermoelectricity
    Heremans, JP
    ACTA PHYSICA POLONICA A, 2005, 108 (04) : 609 - 634