Multi-Agent Exploration-Based Search for an Unknown Number of Targets

被引:0
|
作者
Yousuf, Bilal [1 ]
Lendek, Zsofia [1 ]
Busoniu, Lucian [1 ]
机构
[1] Tech Univ Cluj Napoca, Cluj Napoca, Romania
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
基金
欧盟地平线“2020”;
关键词
Multi-agent system; sensor fusion; active sensing; planning; MULTITARGET TRACKING;
D O I
10.1016/j.ifacol.2023.10.206
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an active sensor fusion technique for multiple mobile agents (robots) to detect an unknown number of static targets at unknown positions. To process and fuse sensor measurements from the agents, we use a random finite set formulation with an iterated-corrector probability hypothesis density filter. Our main contribution is to introduce two different multi-agent planners to quickly find the targets. The planners make greedy decisions for the next state of each agent by maximizing an objective function consisting of target refinement and exploration components. We demonstrate the performance of our approach through a series of simulations using homogeneous and heterogeneous agents. The results show that our framework works better than a lawnmower baseline, and that a centralized version of the planner works best. Copyright (c) 2023 The Authors.
引用
收藏
页码:5494 / 5499
页数:6
相关论文
共 50 条
  • [21] A Centralized Strategy for Multi-Agent Exploration
    Gul, Faiza
    Mir, Adnan
    Mir, Imran
    Mir, Suleman
    Islaam, Tauqeer Ul
    Abualigah, Laith
    Forestiero, Agostino
    [J]. IEEE Access, 2022, 10 : 126871 - 126884
  • [22] MAVEN: Multi-Agent Variational Exploration
    Mahajan, Anuj
    Rashid, Tabish
    Samvelyan, Mikayel
    Whiteson, Shimon
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [23] A Centralized Strategy for Multi-Agent Exploration
    Gul, Faiza
    Mir, Adnan
    Mir, Imran
    Mir, Suleman
    Ul Islaam, Tauqeer
    Abualigah, Laith
    Forestiero, Agostino
    [J]. IEEE ACCESS, 2022, 10 : 126871 - 126884
  • [24] A multi-agent approach to environment exploration
    Maio, D
    Rizzi, S
    [J]. INTERNATIONAL JOURNAL OF COOPERATIVE INFORMATION SYSTEMS, 1996, 5 (2-3): : 213 - 250
  • [25] A hybrid system for multi-agent exploration
    Leung, C
    Al-Jumaily, A
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, PROCEEDINGS, 2004, : 209 - 213
  • [26] Multi-agent Exploration with Reinforcement Learning
    Sygkounas, Alkis
    Tsipianitis, Dimitris
    Nikolakopoulos, George
    Bechlioulis, Charalampos P.
    [J]. 2022 30TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2022, : 630 - 635
  • [27] Cooperative targets assignment based on multi-agent reinforcement learning
    Ma Y.
    Wu L.
    Xu X.
    [J]. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2023, 45 (09): : 2793 - 2801
  • [28] MuDE: Multi-agent decomposed reward-based exploration
    Yoo, Byunghyun
    Yi, Sungwon
    Kim, Hyunwoo
    Shin, Younghwan
    Han, Ran
    Seo, Seungwoo
    Song, Hwa Jeon
    Chung, Euisok
    Yang, Jeongmin
    [J]. NEURAL NETWORKS, 2024, 179
  • [29] Multi-Agent Cooperative Target Search
    Hu, Jinwen
    Xie, Lihua
    Xu, Jun
    Xu, Zhao
    [J]. SENSORS, 2014, 14 (06) : 9408 - 9428
  • [30] Multi-agent Q-learning Based Navigation in an Unknown Environment
    Nath, Amar
    Niyogi, Rajdeep
    Singh, Tajinder
    Kumar, Virendra
    [J]. ADVANCED INFORMATION NETWORKING AND APPLICATIONS, AINA-2022, VOL 1, 2022, 449 : 330 - 340