A modular framework for stabilizing deep reinforcement learning control

被引:1
|
作者
Lawrence, Nathan P. [1 ]
Loewen, Philip D. [1 ]
Wang, Shuyuan [2 ]
Forbes, Michael G. [3 ]
Gopaluni, R. Bhushan [2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada
[3] Honeywell Proc Solut, N Vancouver, BC V7J 3S4, Canada
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
Reinforcement learning; data-driven control; Youla-Ku.cera parameterization; neural; networks; stability; process control; SYSTEMS;
D O I
10.1016/j.ifacol.2023.10.923
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a framework for the design of feedback controllers that combines the optimization-driven and model-free advantages of deep reinforcement learning with the stability guarantees provided by using the Youla-Ku.cera parameterization to define the search domain. Recent advances in behavioral systems allow us to construct a data-driven internal model; this enables an alternative realization of the Youla-Ku. cera parameterization based entirely on input-output exploration data. Using a neural network to express a parameterized set of nonlinear stable operators enables seamless integration with standard deep learning libraries. We demonstrate the approach on a realistic simulation of a two-tank system. Copyright (c) 2023 The Authors.
引用
收藏
页码:8006 / 8011
页数:6
相关论文
共 50 条
  • [41] A Blockchain-Enabled Demand Management and Control Framework Driven by Deep Reinforcement Learning
    Ma, Rui
    Yi, Zhehan
    Xiang, Yingmeng
    Shi, Di
    Xu, Chunlei
    Wu, Haiwei
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (01) : 430 - 440
  • [42] A practical deep reinforcement learning framework for multivariate occupant-centric control in buildings
    Lei, Yue
    Zhan, Sicheng
    Ono, Eikichi
    Peng, Yuzhen
    Zhang, Zhiang
    Hasama, Takamasa
    Chong, Adrian
    [J]. APPLIED ENERGY, 2022, 324
  • [43] An Adaptive Control Framework or Dynamically Reconfigurable Battery Systems Based on Deep Reinforcement Learning
    Yang, Feng
    Gao, Fei
    Liu, Baochang
    Ci, Song
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (12) : 12980 - 12987
  • [44] A Novel Framework Combining MPC and Deep Reinforcement Learning With Application to Freeway Traffic Control
    Sun, Dingshan
    Jamshidnejad, Anahita
    De Schutter, Bart
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (07) : 6756 - 6769
  • [45] Learning to Navigate Through Complex Dynamic Environment With Modular Deep Reinforcement Learning
    Wang, Yuanda
    He, Haibo
    Sun, Changyin
    [J]. IEEE TRANSACTIONS ON GAMES, 2018, 10 (04) : 400 - 412
  • [46] Learning to Fly: A Distributed Deep Reinforcement Learning Framework for Software-Defined UAV Network Control
    Cheng, Hai
    Bertizzolo, Lorenzo
    D'oro, Salvatore
    Buczek, John
    Melodia, Tommaso
    Bentley, Elizabeth Serena
    [J]. IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2021, 2 : 1486 - 1504
  • [47] An End-to-End Deep Reinforcement Learning Based Modular Task Allocation Framework for Autonomous Mobile Systems
    Ma, Song
    Ruan, Jingqing
    Du, Yali
    Bucknall, Richard
    Liu, Yuanchang
    [J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, : 1 - 15
  • [48] Containerized Framework for Building Control Performance Comparisons: Model Predictive Control vs Deep Reinforcement Learning Control
    Fu, Yangyang
    Xu, Shichao
    Zhu, Qi
    O'Neill, Zheng
    [J]. BUILDSYS'21: PROCEEDINGS OF THE 2021 ACM INTERNATIONAL CONFERENCE ON SYSTEMS FOR ENERGY-EFFICIENT BUILT ENVIRONMENTS, 2021, : 276 - 280
  • [49] Framework for design optimization using deep reinforcement learning
    Yonekura, Kazuo
    Hattori, Hitoshi
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2019, 60 (04) : 1709 - 1713
  • [50] A framework for scheduling in cloud manufacturing with deep reinforcement learning
    Liu, Yongkui
    Zhang, Lin
    Wang, Lihui
    Xiao, Yingying
    Xu, Xun
    Wang, Mei
    [J]. 2019 IEEE 17TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2019, : 1775 - 1780