Convergence of stochastic gradient descent under a local Lojasiewicz condition for deep neural networks

被引:0
|
作者
An, Jing [1 ]
Lu, Jianfeng [1 ]
机构
[1] Duke University, United States
来源
arXiv | 2023年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Gradient methods - Stochastic systems
引用
收藏
相关论文
共 50 条
  • [31] Gradient Descent Analysis: On Visualizing the Training of Deep Neural Networks
    Becker, Martin
    Lippel, Jens
    Zielke, Thomas
    [J]. PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL 3: IVAPP, 2019, : 338 - 345
  • [32] Learning dynamics of gradient descent optimization in deep neural networks
    Wei Wu
    Xiaoyuan Jing
    Wencai Du
    Guoliang Chen
    [J]. Science China Information Sciences, 2021, 64
  • [33] Gradient Descent Finds Global Minima of Deep Neural Networks
    Du, Simon S.
    Lee, Jason D.
    Li, Haochuan
    Wang, Liwei
    Zhai, Xiyu
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [34] A proof of convergence for stochastic gradient descent in the training of artificial neural networks with ReLU activation for constant target functions
    Arnulf Jentzen
    Adrian Riekert
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [35] Learning dynamics of gradient descent optimization in deep neural networks
    Wei WU
    Xiaoyuan JING
    Wencai DU
    Guoliang CHEN
    [J]. Science China(Information Sciences), 2021, 64 (05) : 17 - 31
  • [36] A proof of convergence for stochastic gradient descent in the training of artificial neural networks with ReLU activation for constant target functions
    Jentzen, Arnulf
    Riekert, Adrian
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (05):
  • [37] On the convergence and improvement of stochastic normalized gradient descent
    Shen-Yi ZHAO
    Yin-Peng XIE
    Wu-Jun LI
    [J]. Science China(Information Sciences), 2021, 64 (03) : 105 - 117
  • [38] Linear Convergence of Adaptive Stochastic Gradient Descent
    Xie, Yuege
    Wu, Xiaoxia
    Ward, Rachel
    [J]. arXiv, 2019,
  • [39] Accelerating deep neural network training with inconsistent stochastic gradient descent
    Wang, Linnan
    Yang, Yi
    Min, Renqiang
    Chakradhar, Srimat
    [J]. NEURAL NETWORKS, 2017, 93 : 219 - 229
  • [40] On the Convergence of Stochastic Gradient Descent with Adaptive Stepsizes
    Li, Xiaoyu
    Orabona, Francesco
    [J]. 22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89